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Abstract—In this work, we combine the strengths of humans
and robots by developing MARCER, a novel interactive and
multimodal end-user robot programming system. MARCER
utilizes a Large Language Model to translate users’ natural
language task descriptions and environmental context into Action
Plans for robot execution, based on a trigger-action programming
paradigm that facilitates authoring reactive robot behaviors.
MARCER also affords interaction via augmented reality to help
users parameterize and validate robot programs and provide
real-time, visual previews and feedback directly in the context
of the robot’s operating environment. We present the design,
implementation, and evaluation of MARCER to explore the
usability of such systems and demonstrate how trigger-action
programming, Large Language Models, and augmented reality
hold deep-seated synergies that, when combined, empower users
to program general-purpose robots to perform everyday tasks.

Index Terms—End-user Robot Programming; Human-Robot
Collaboration; Large Language Models; Augmented Reality;

I. INTRODUCTION

Robots excel at simple and repetitive tasks, leading to their
widespread adoption within manufacturing and warehouse
settings [1]-[3]. However, these situations often require an
expert programmer to design and validate robot programs in a
structured environment, making it challenging to adapt them to
new scenarios. Consequently, in domestic settings, robots are
limited to basic, single-purpose systems in non-invasive roles
such as vacuum cleaners or lawn mowers [4]-[6]. To expand
their role within the home, general-purpose robots must be
capable of executing a diverse set of complex and potentially
interactive or collaborative tasks while communicating with
everyday users to understand and conform to their preferences
[7]-[15]. These tasks might range from practical chores such as
washing dishes or putting away groceries to social interactions
such as greeting people who walk into the home [16]-[18].
In pursuit of this goal, we develop MARCER: Multimodal
Augmented Reality for Composing and Executing Robot Tasks.
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“Move the groceries
that are on the table
to the shelves.”

—w

Fig. 1: MARCER, a multimodal robot programming system
that combines natural language and augmented reality to
build trigger-action rules. A large language model combines
commands such as “Move the groceries on the table to the
shelves” with environmental context to generate reactive robot
programs. AR allows users to set constraints and preview
actions through digital twins, directly in their workspace.

MARCER enables users to build trigger-action programs using
natural language, while offering customization and visual
feedback via augmented reality. Our system helps bridge the
gap between users, who know their own high-level goals, and
robots, which possess various low-level capabilities.

MARCER aims to improve robot programming, which
can be a cognitively taxing skill for end-users. One of our
insights is to leverage Trigger-Action Programming (TAP) to
simplify this process, enabling end-users to construct reactive
programs without prior coding experience [19]. Through
reactive programs, users define trigger-action pairs where, upon
meeting the trigger conditions, the related actions are executed.
The success of TAP has led the robotics community to begin
developing TAP systems that enable non-expert users to craft
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reactive social robot behaviors [20] and coordinate robot actions
in collaborative tasks [21], [22]. These systems provide initial
evidence that end-users with little or no prior experience may
quickly learn and successfully apply the TAP paradigm to robot
programming.

While promising, prior TAP systems have required users to
manually specify TAP rules and Action Plans on a physical
interface, such as a handheld tablet or static computer screen.
Instead, we propose incorporating Large Language Models
(LLMs) to generate rules to be executed on a robot from natural
language input. When combined with contextual information
from the environment, LLMs have been shown to generate
action plans that can be successfully executed by robots [8]—
[15], [23], [24]. Building on prior work [15], [23], MARCER
leverages environment information to generate robot rules from
user speech. Critically, users can also provide verbal feedback,
ensuring the generated rules align with their expectations.

We designed MARCER to enhance the programming process
by providing visual feedback for sensemaking, the process of
constructing meaning from information [25]. As robots operate
in the real physical world, MARCER provides Augmented
Reality (AR) visualizations to convey in sifu programming
information, which can be a more effective way to present
robot data compared with 2D interfaces [26], [27] and enhance
user abilities in grasping contextual details essential for task
completion [28]-[31]. In MARCER, we design and evaluate
the first integration of TAP, verbal task specification, and AR
visual feedback in a single holistic system.

Contributions: We present MARCER, a novel robot pro-
gramming system that merges the capabilities of natural
language and AR to offer a seamless multimodal experience.
We showcase a deployment of MARCER on a Fetch mobile
manipulator robot [32] and evaluate our system with 15
participants. Our key contributions are as follows: (1) A system
design for multimodal robot programming that integrates
verbal commands and AR to interface with users, (2) An
exploration into our system’s capabilities and usability, and
(3) An open source implementation of our system found at
https://github.com/hri-ironlab/MARCER.git. We demonstrate
how the capabilities of multimodal systems open new possibil-
ities for interactions between people and robots.

II. RELATED WORK

MARCER integrates end-user robot programming, LLM-
powered natural language interaction, and mixed reality inter-
faces to create a multimodal system for human-robot interaction.
Below, we discuss relevant work in each of these areas.

A. End-User Robot Programming

End-user robot programming tools help users without
coding experience program robots. These tools use various
programming paradigms such as block-based [33]-[35], goal-
oriented [36], behavior trees [37], [38], or flow-based [39], [40]
programming. A shared focus among these approaches is visual
programming, where action primitives are presented as nodes
that users connect to form action plans. Visual programming
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abstracts away the complexity of low-level joint control,
making it easier for users to create robot programs. Another
approach gaining traction is Trigger Action Programming
(TAP), commonly used in Internet of Things (IoT) applications
like SmartThings, If-This-Then-That, and Zapier. TAP has since
expanded into end-user programming for home automation and
interactive applications [41]-[46] and recently for personalized
social robot behavior [20], and human-robot collaboration [21],
[22]. Our work builds on this by combining TAP with AR and
linking natural language commands directly to the real world.

B. Large Language Models for Robot Planning

The scientific community is actively investigating how to
automatically parse and ground natural language into actionable
steps for robots. Large Language Models, which are trained
using internet-scale text datasets, appear particularly well-suited
to this task and have demonstrated considerable abilities to
comprehend diverse concepts and generalize across domains
with minimal examples [15], [23], [47]-[57]. MARCER follows
a promising approach suggested by recent work where users
prompt a LLM with high-level tasks, which, combined with the
context of the environment, is used to generate template action
plans in terms of known robot behaviors (pre-programmed low-
level actions such as pick, place, etc.) [8]-[14]. For instance,
Berk Karli et al. 2024 [24] show how approaching robot
programming with an LLM may enable users to provide
minimally constrained text commands. MARCER extends such
systems by enabling interaction via spoken natural language,
rather than typed text, which we believe is a more intuitive and
hands-free approach to robot programming, and embedding
this interaction within a TAP paradigm.

C. AR Programming Feedback

Providing visual feedback to users during programming and
debugging is crucial to enhance user experience and aid in
identifying and resolving issues. In designing MARCER, we
leverage AR to provide this feedback and related contextual
information in situ within a user’s environment. Several
modalities for AR exist, ranging from video overlays on
traditional computer screens [58]-[60], mobile tablet AR [61]-
[64], projector overlays [65]-[67], and augmented reality head
mounted displays (ARHMD) [68]—-[74]. Recent research has
shown that programming tools may utilize AR to improve situa-
tional awareness, system usability, and overall user interactions
(see [27], [46], [75]-[79] for recent surveys of mixed reality
robotics). Therefore, in MARCER we employ an ARHMD to
deliver programming feedback in a hands-free experience.

D. Multimodal Robot Programming Interfaces

Prior research has investigated how to provide users with rich
sensory information regarding robots and their environments by
combining different modalities [80], [81]. For example, prior
work has explored interfaces that combine force sensing with
vision [82], gaze with voice [83], speech with gestures [84],
or natural language text with block-programming [33]. Most
similar to our work is that of Marin et al. 2005 [85], Akan
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your rules.
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(c) Approving the new plan (d) Executing the plan

Fig. 2: As depicted in Fig. 1, a user begins with a command such as, “Move the food that is on the table to the shelves.” (a)
MARCER then generates an associated trigger-action rule while highlighting relevant objects and surfaces through AR (orange
wireframes). In this case, (b) the user provides feedback, specifying preferred placement locations using 3D virtual zones within
the workspace (blue rectangles) and verbal feedback (“Actually put the food in zone 6). (c) The updated rule is presented with
visual highlights, and the system awaits the user’s approval or further edits. (d) Upon approval, users can preview actions via
AR digital twins showing the current, future, and final states of relevant objects, and simulated robot movements.

et al. 2011 [86], and Huang et al. 2019 [87] who implement
voice commands and AR to facilitate robot programming. In
contrast to these systems, which rely on 2D AR overlays or
language commands for single action primitives, our system
combines an ARHMD with a LLM to provide 3D spatial input
and feedback. This allows users to freely interact with their
workspace, while building TAP rules through natural language,
enabling users to create programs that address real-world tasks.

III. SYSTEM DESIGN

MARCER affords multimodal user interaction where users
provide input through both natural language (i.e., spoken
commands to specify goals, refine plans, and interact with
the AR menu) and gestures, which are used to define 3D AR
zones relevant to particular robot activities, while also receiving
visual AR feedback. Apart from manipulating the 3D zones,
users may interact with the interface in a hands-free manner
by utilizing verbal input. An example workflow for a direct
command is depicted in Fig. 2, while an example for building
a trigger-action command is depicted as follows:

1) A user creates a trigger zone by saying “spawn zone.” When
an object or user enters this zone, any associated actions
will be executed. Users can create multiple zones, such
as one for indicating where a robot can grab objects and
another for where to place them. In addition to zones, users
can define triggers relevant to locations, time, or both.

2) To generate a TAP rule, the user says the key phrase “Hey
Fetch,” followed by a conditional command such as, “If I
place groceries in zone one, move them to the middle shelf.”
The system then plans a function, comprised of action

primitives, for moving the groceries from zone one to the
middle shelf while highlighting relevant objects, surfaces,
or zones. These highlights help users quickly preview which
elements are involved in the plan.

3) Users can edit their initial command. For instance, if the
user wants the groceries placed in a specific area on the
shelf, they can position a second zone on a subsection of
the shelf and say, “Place them in zone two instead.” This
prompts the system to adjust its plan and highlight the
newly relevant items. Once satisfied, users can approve the
final rule by saying “approve.”

4) When the triggering conditions of a stored rule are met, the
system executes the associated actions. During execution,
visualizations display groceries being placed in zone two,
including relevant highlights, robot trajectories, and current
and future object positions. Users can stop the robot and
redo the process at any time by saying “stop robot,” or
continue to create more rules.

To enable this workflow, our system takes inspiration from prior

work in robot programming tools [20], [22], [24], augmented

reality robotics interfaces [21], [88]-[90] and LLM research

[8]. MARCER is composed of: (1) Visual Interface, (2) Speech

Processor, (3) Rule Generator, (4) Large Language Model,

(5) Rule Monitor, (6) Scene Graph, (7) Object Tracker, (8)

Planning Scene, (9) Action Dispatcher, and (10) Manipulation

Node. Fig. 3 illustrates these components and is detailed below.

A. Visual Interface and Speech Processor

To facilitate multimodal interaction, users can author robot
programs using an AR visual interface (see Fig. 4) and voice
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Fig. 3: After a spoken command, the Speech Processor converts it to text, which is sent to the Rule Generator. The Rule
Generator collaborates with the LLM to create rules, displays feedback via the Visual Interface, and sends approved rules to
the Rule Monitor. The Rule Monitor evaluates each condition, querying the LLM for unknown conditions as needed. The
Scene Graph, updated by the Object Tracker, defines relationships between objects, surfaces, users, and zones, sharing this data
system-wide. The Action Dispatcher works with the Manipulation Node to plan and execute the Rule Monitor’s Action Plan.

commands. The Visual Interface allows users to create, resize,
and move 3D zones that specify when to trigger an action
or where to place objects. By grounding these zones in the
real world, users can specify locations that require depth
information such as shelves or object handover locations
in space, overcoming the limitations of 2D interfaces that
often provide a single top-down view of a workspace. This
approach also enables us to overlay the robot’s digital twin for
visualization of planned motion trajectories. To minimize visual
clutter, labels for surfaces, objects, and zones appear only when
a user’s gaze activates them. Additionally, a menu within the
user’s workspace displays text information to communicate
program states (see Fig. 2). This includes user commands,
rule feedback, a description of the generated TAP rule, and
the current action being planned or executed. Also listed are
active, inactive, and executing rules for user reference and
management. Users can operate the visual interface entirely
through voice commands, freeing the user’s hands for tasks. We
see this as a crucial requirement for scenarios that require robot
assistance, where a user’s hands may already be engaged. For
example, the user may be washing dishes, unloading groceries,
or folding laundry, while desiring the robot to put away cleaned
dishes, grocery items, or folded clothes, analogous to human-
human collaborative work. To navigate the interface, users
can trigger buttons using voice commands mapped to specific
interface menu keywords, such as “spawn zone” for creating
a zone or “stop robot” to stop execution immediately in case
of unexpected robot actions. To send instructions to the robot,
the Speech Processor listens for the wake word, “Hey Fetch,”
sending the subsequent instruction to the Rule Generator.

B. Rule Generator and Large Language Model

The Rule Generator analyzes verbal commands by querying
a LLM in three different stages: Trigger Detector, Function

ot performs an action
30 seconds. If 30 seco: sed,
ks up a bottle. The

Fig. 4: The visual interface can be placed anywhere in AR.
Active rules appear on the left panel, with executing rules
highlighted. Users can also view descriptions of each rule.
Objects and locations are highlighted orange during execution.

Generator, and Description Generator. Each stage uses prompts
constructed from a reference dataset of 54 manually annotated
examples containing a user command, its trigger condition,
relevant environmental context, and a corresponding Python
TAP function (see https://github.com/hri-ironlab/MARCER.git
for the dataset and the Appendix for example prompts). While
the LLM can operate independently, providing a reference
dataset has been found to improve the quality of the generated
output [8], [13].

Trigger Detector: In the first stage, the Trigger Detec-
tor queries the LLM with a prompt containing both the
user’s spoken command and a set of example command-
trigger pairs to identify the intended trigger type. Currently,
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MARCER supports four types of triggers, a location trigger
of the kind “If an object/person is in [location], then
[desired_action]” (e.g., “If a dish is on the table, put it
in the sink” or “When I get back, if I enter Zone 1, hand
me food from the shelf”), a timed trigger of the format
“If [desired_time] has passed, [desired_action]”
(e.g., “In 10 minutes, pour me a glass of water” or “In 1 hour,
put the food on the table™), a timed location trigger of the
format “If an object/person has been in [location] for
[desired_time], [desired_action]” (e.g. “When-
ever any object has been in Zone 1 for 5 minutes, move it to the
middle shelf” or “If the glass has been sitting on the table for 30
seconds, pour some water in it”), and a null trigger for handling
immediately executable commands, such as “move the mustard
from the table to the shelf.”” MARCER does require each
command to begin with the keywords “Hey Fetch” followed by
a conditional statement or a direct command. However, rather
than forcing users to adhere to a strict conditional format,
MARCER seeks to match what was said to one of our four
trigger types. This provides users with the freedom to verbally
specify their commands however they like. After inferring the
trigger type, this information is sent to the Function Generator.

Function Generator: The Function Generator queries the
LLM to generate a Python function that represents the user’s
command as a trigger-action rule. By directly producing and
executing Python code at runtime, MARCER eliminates the
need to translate task descriptions into executable code. To
enable this, the query utilizes a prompt constructed with
examples tailored to the specific trigger type from the dataset. In
addition, the Scene Graph (see §1II-E) provides relevant names
and locations of objects and surfaces within the scene. This
information is added to the prompt along with any corrective
feedback the user may have provided to fix prior generated
rules. To evaluate triggers (e.g., “If a dish is on the table, put
it in the sink™ has the trigger “dish is on the table”, or “Put
all food on the table” should execute for all objects of type
“food”) and dynamically changing environments, we designed a
primitive function check_condition that can be included
in the generated function. When executed by the Rule Monitor
(see §III-C), if it returns true, the associated actions are passed
to the Action Dispatcher (see §III-D). In case of an unknown
condition, the function queries the LLM for a truth value.

Description Generator: The Description Generator queries
the LLM to summarize the output Python function in plain
language that non-programmers can understand. Users can then
review this summary and decide if it matches their expectations.
If not, they can provide verbal feedback for recomputing the
plan. MARCER incorporates each round of feedback until the
user is satisfied with the generated function output, which,
once approved, is forwarded to the Rule Monitor.

C. Rule Monitor

MARCER currently supports the If-Then TAP rule paradigm,
with potential for future expansion. An If-Then rule triggers
an action once its If condition is met. For example, “If an
object is in [Zone 1], then [move all objects from Zone 1 to
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the shelf]” or “If a dish is on the dish area for [10 minutes],
move it to the bottom shelf”, which MARCER formulates
as “If a dish is on the [dish area] and [10 minutes] have
passed, then [move it to the bottom shelf]”. The Location
Triggers are based on “surfaces,” like tables or shelves in the
environment, and user-defined “zones” that can exist anywhere
in 3D space (for example, a user might create a midair zone for
object handovers). To evaluate location conditionals, the Rule
Monitor queries the Scene Graph to check whether objects
satisfy an “is on” or “is in” relationship. For Timed Triggers,
the Rule Monitor stores a new timestamp when a rule is initially
added to the monitoring list, or when an object moves into
a time-restricted location. During each conditional check, if
the elapsed time with respect to the initial stored timestamp
exceeds the specified threshold in the rule, the Rule Monitor
triggers the associated actions. Users can create, edit, or delete
rules when the robot is ready for commands, during rule setup,
or while providing verbal feedback.

D. Action Dispatcher

When a rule trigger evaluates to true, the Action Dispatcher
executes its associated actions by coordinating with the Ma-
nipulation Node (§III-F). This includes managing the planning
and execution of actions or activating fallback measures when
necessary. For example, if execution fails because sensed joint
positions deviate from the motion plan’s tolerance, the system
replans from the current robot state and retries the action. The
Action Dispatcher continues to broadcast state updates and
feedback, enabling other components to monitor the progress
of manipulation tasks. Once all actions for a TAP rule succeed,
the next triggered rule can be executed.

E. Scene Graph and Object Tracker

The Scene Graph and Object Tracker are used to compute
the positions and relationships of objects, surfaces, and zones
in the scene. These object poses, along with zone poses and
dimensions from the visual interface, are fed into the Scene
Graph. Scene graphs are commonly utilized in robotics for
creating a shared 3D world model to be queried by different
components in a robotic system. Our Scene Graph component
currently consists of nodes representing objects, zones, and
surfaces, each storing attributes such as position, orientation,
and size. After each update loop, the Scene Graph computes
its edges, representing relationships between nodes. Currently
supported are the “is on” relationships between an object and
a surface and the “is in” relationships between an object and
a zone. This relationship is utilized by the Rule Generator for
building TAP rules relevant to the scene, Rule Monitor for
checking conditions, and the Manipulation Node to calculate
allowable surface collisions during pick-and-place operations.

F. Manipulation Node and Planning Scene

MARCER creates functions composed of known primitive
actions that, when combined, can accomplish a variety of
household tasks. Currently, MARCER supports six primitive
actions: pick, place, pour, wipe surface, wave, and dance. To
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execute these actions, the Action Dispatcher sends the current
action to the Manipulation Node, which then coordinates with
the Planning Scene. Upon receiving a manipulation plan request,
the Planning Scene takes a snapshot of the world objects,
surfaces, and robot pose by querying the Scene Graph. From
this snapshot, the Manipulation Node computes a collision-free
motion plan, which is displayed via the Visual Interface. The
robot executes the plan through its joint controller.

IV. SYSTEM IMPLEMENTATION

Robot Platform and Object Tracking: MARCER currently
works with the Fetch robot, a 7 degree-of-freedom mobile
manipulator [32]. Within the Manipulation Node, MARCER
utilizes the Movelt! Task Constructor (MTC) to plan and
execute manipulation actions [91]. MARCER’s motion planning
time averaged 7.62 seconds/plan (SD = 1.50 sec.). One benefit
to MTC, is its compatibility with over 150 robot platforms
using Movelt! Thus, MARCER can be adapted to other robots
by swapping the Movelt! configuration profiles provided by
other platforms. To track objects within the scene, we use a
Vicon motion capture system as robust perception was not the
focus on this work; future systems could leverage the robot
and ARHMD sensors to replace external tracking. By placing
reflective markers on the robot and scene objects, we can track
the position and orientation of objects in the scene relative to
the robot. This information is passed to the Scene Graph to be
read by other components. Currently, our setup (depicted in
Fig. 5a), includes four surfaces, the middle shelf, bottom shelf,
dish area, and table and a combination of common household
items including food, drinkware, and a sponge.

AR Interface: For our visual interface, we use the Microsoft
HoloLens 2 ARHMD. We use the Unity game engine and the
Mixed Reality Toolkit to build and stream holograms to the
ARHMD [92]. To align the holograms and the real world in
the AR camera space, we follow a two-step process. First,
we match the origin of a fiducial marker tracked by the AR
headset [93] with a corresponding point in the Vicon tracking
space. Then, the positions of the tracked objects and the robot
are transformed into the fiducial marker’s coordinate system,
aligning their virtual representations in the HoloLens. With
this approach, we are also able to translate the position and
orientation of virtual zones to the real world.

Speech Processing and Large Language Model: To
enable natural language input, our speech processor utilizes
the Windows Keyword Recognition Subsystem, PyAudio, and
the Whisper speech recognition model [94]. To navigate the
AR interface, users can trigger buttons using voice commands
mapped to specific keywords. To recognize commands to send
to the Rule Generator, the Speech Processor listens for the key
phrase, “Hey Fetch.” Once recognized, the instruction following
the key phrase is sent to the Rule Generator. We implement our
Large Language Model using the GPT-40 [57], [95] model
offered by the OpenAl API [96].

Hardware and Communication: Our system operates on
two desktops equipped with an NVIDIA RTX 3080 GPU. One
of the machines has a Windows 11 operating system, and runs
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the Vicon tracking software and our Unity application. Vicon
tracking data is transmitted to the second desktop via a Python
socket. The second desktop has a Ubuntu 20.04 operating
system, and hosts the back-end of our programming system
on Robot Operating System (ROS), a framework designed
for developing robot software. The ROS TCP Endpoint and
Connector [97] connect Unity to ROS, enabling accurate
visualizations of the robot and object states.

V. SYSTEM EVALUATION

We conducted an IRB-approved study to explore how users
interact with MARCER. Participants completed three robot-
assisted tasks modeled after everyday scenarios: (1) Kitchen
Cleanup, (2) Item Storing, and (3) Object Handover. These
tasks involve defining object placements, triggers for actions,
and creating combinations of actions, and as such we believe
MARCER may also apply to more specialized tasks such as
object assembly [21], [22], [98] or chemistry experiments [24],
which require similar specifications.

Task 1. Kitchen Cleanup: (20 minute cap) Participants
programmed the robot to clean the kitchen area (see Fig. 5b).
To be considered clean, objects needed to remain in the dish
area for 15 seconds (mimicking being rinsed), then be placed
on the bottom shelf. Users were told to build a repetitive rule
for this task to handle multiple dishes. Next, users programmed
the robot to clean the bottle, pour the contents of the glass
into the cup, and have the robot clean the glass. After the user
moved the cup to the side table and the main table was empty,
the robot needed to wipe the main table with the sponge.
Task 2. Item Storing: (20 minute cap) Participants pro-
grammed the robot to move the objects from the table to
the shelves. While the glass and cup could be placed anywhere
on the bottom shelf, participants needed to define a food storage
area by placing a zone in the outlined space on the middle
shelf. See Fig. 5c for the initial setup of the scene.

Task 3. Object Handover: (10 minute cap) Participants
programmed the robot to trigger a handover when an object
was held in a particular zone in 3D space. Once programmed,
the user held the object in the zone to complete the handover.

A. Procedure

Participants first read and signed a consent form. An
examiner then guided them through a 30 minute training
script, which included creating a direct command, a one-time
rule that executed and deleted itself, and a repetitive rule that
continued to check for execution. The examiner explained the
visualizations, how to provide verbal feedback, how to delete
rules, and how to view active rules and their descriptions,
answering any questions along the way. After successfully
completing the tutorials, participants read over the first task,
Kitchen Cleanup, while the experimenters set up the scene.
The task began when participants made their first interaction
with the interface. Once the task was completed or time ran
out, the task was ended. This procedure was repeated for
Task 2 and Task 3. After Task 3, participants completed a
survey that included the System Usability Scale (SUS) [99],

534
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.



Session 5A: Extended Reality (XR)

Scene Objects

(a) Workspace (b) Task 1: Kitchen Cleanup

HRI 2025, March 4-6, 2025, Melbourne, Australia

(c) Task 2: Item Storing (d) Task 3: Object Handover

Fig. 5: The robot can move (a) the Scene Objects between the “Middle Shelf”, “Bottom Shelf”, “Dish Area”, and “Table.” In
Task 1 (b), users programmed the robot to clean the dishes by moving them to the “Dish Area” for 15 seconds, placing them
on the bottom shelf, and wiping the table. In Task 2 (c), users defined a virtual zone on the left side of the “Middle Shelf” and
instructed the robot to move food to that zone and place a glass and cup anywhere on the bottom shelf. In Task 3 (d), users
placed a virtual zone in 3D space for triggering a handover, prompting the robot to grab the object from the user’s hand.

demographic information, and subjective feedback, followed
by a semi-structured interview. The training script, task sheets,
survey, and interview guide are included in our git repository.

B. Measures

We collected a series of measurements to characterize our
system using data collected from participants. These include
task completion time, total time spent programming, the number
of times users created a one-time command or repetitive rule,
gave verbal feedback, or rejected rules, and types of errors
encountered. We categorized the errors into five types: T:
Vicon tracking error, R: Robot manipulation error, L: LLM
logic error/hallucination, H: Headset error, and M: Microphone
error. Please see the Appendix for more details.

C. Participants

For this study we recruited 15 participants (9 male, 6 female)
with ages ranging from 18-50 (M = 25.6, SD = 7.67). Thirteen
(86.6%) participants reported having three or more years
of programming experience and eight (53.3%) participants
reported owning an IoT device. On a single item 1-7 scale (7
= most familiar), participants reported their average familiarity
with robotics as 3.2 (SD = 2.11), VR/AR technologies as 4.1
(SD = 1.81), and TAP as 5.8 (SD = 1.42).

D. Findings

Table I summarizes the objective data from our system
evaluation. Ten (66.67%) participants completed all three tasks,
while two (13.33%) did not finish the first task, and three (20%)
did not finish the second within the time limits. The two who
failed Task 1 commanded the robot to clean the glass with a
sponge instead of following the instructions of leaving it in the
dish area for 15 seconds. Although valid in the real world, this
method exceeded the robot’s capabilities, preventing it from
planning and executing the action. In Task 2, two participants
placed an object on the table in a position the robot could
not reach, leading it to continuously fail to plan a trajectory
to pick it up. The third participant created a rule that moved
all food objects, even those already on the shelf, to the food
storage area. This left no space for the final object, and the
participant did not debug the issue in time.

The participants’ programming time for all tasks (M = 5:36,
SD = 4:07) including the LLM plan generation time (M = 4.69
sec./query, SD = 2.41 sec.) contributed to just 27% of the total
experiment time (M = 20:37, SD = 8:21). Surveys showed that
users found creating conditional rules straightforward, with
both location-based triggers (M = 6.4, SD = 1.30) and time-
based triggers (M = 6.4, SD = 0.91) rated to be easy to create.
Users often opted to set rules using the triggers, as pointed out
by P11: “The autonomous repetitive task feature made it very
easy. For the second scenario it was quite easy to automate
the entire process without needing to re-command” and P14:
“Having repeated rules made it easier so I did not have to
say multiple commands”. When asked about the rule editing
mechanism, P15 noted that “[giving feedback] definitely helped
a lot when the task given in the first place was wrong and it
made changing statements easier. It also saved time in a way.”
Along the same lines, P9 mentioned that “The feedback system
helped a lot because I made a lot of mistakes and I wanted to
edit things.”

Users also agreed that the interaction with the robot was
fluent M = 5.13, SD = 1.73) and became more fluent over
time (M = 6.07, SD = 1.10), as noted by P6: “Ar first I felt
adversarial to the robot, but by the end we were a team.” User
comments such as P4: “seeing what the robot was gonna
do before it actually performed the action made the whole
thing really friendly,” P1: “I think like I didn’t really struggle
with making the rules because I just said it how I thought I
would naturally say it in general, and the response it gave
me was pretty intuitive and matched what I was looking for,”
and P8: “Having the robot explain the thought process and
actions it was going to take before actually taking them [made
it easier]” point to MARCER’s integration of the AR previews,
unconstrained speech commands, and natural language plan
description being particularly useful. The system received a
SUS score of 70.83 (SD = 16.39), indicating “above average”
usability [100].

VI. DISCUSSION

MARCER demonstrates the design and development of
a state-of-the-art robot programming interface that provides
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TABLE I: Metrics obtained include task completion time and whether they did not finish (DNF) in the allotted time, total time
spent programming, number of rules created for the task, number of times feedback was provided, number of times a rule was
rejected, and the System Usability Score. Errors encountered include T: Vicon Tracking error, R: Robot manipulation error, L:
LLM logic error/hallucination, H: Headset error, and M: Microphone error (see the Appendix for more details).

Task 1: Kitchen Cleanup

Task 2: Item Storage

Task 3: Object Handover

Total Prog. # # # Total Prog. # # # Total Prog. # # #
PID Time Time Rules Feed. Rej. Time Time Rules Feed. Rej.  Time Time Rules Feed. Rej. Errors SUS
P1 7:58  1:22 3 0 0 9:05  2:48 2 1 0 2:51  0:16 1 0 0 T,R,L 725
P2 11:27 2:51 5 0 0 14:52  4:25 2 3 0 2:33  0:26 1 0 0 - 70
P3 9:34 141 4 0 0 DNF  2:47 8 0 0 1:55  0:17 1 0 0 T,L 875
P4 9:50 1:34 4 0 0 8:44  0:50 2 0 0 2:22 0:22 1 0 0 H 70
P5 8:37  1:59 3 0 0 DNF  5:05 2 2 3 5:02  2:33 1 0 2 T,L,R 40
P6 9:47  0:57 3 1 0 6:46  0:43 4 0 0 1:54  0:14 1 0 0 - 82.5
P7  15:43 5:20 4 0 0 15:45  2:49 4 0 2 4:14  2:06 1 1 1 T,L 80
P8 9:57  2:05 4 3 1 9:41  0:37 2 0 0 2:13  0:13 1 0 0 - 92.5
P9 7:44  2:01 3 0 0 DNF 4:19 8 0 4 3:01  0:39 1 0 1 L,LR 675
P10 DNF 7:55 8 1 0 9:24 1:01 3 0 0 2:33  0:44 1 1 0 LLR 35
P11 10:35 1:51 4 2 0 10:27  0:36 2 0 0 2:15  0:15 1 0 0 - 70
P12 10:34 1:00 4 0 0 18:26  2:08 5 0 0 2:35  0:23 1 0 0 L,LR 60
P13 836 1:32 4 0 0 13:42 2:32 5 0 1 2:54  0:20 1 0 0 L,LR 675
P14  8:17 1:07 4 0 0 9:49  0:52 2 0 0 2:18  0:20 1 0 0 H 77.5
P15 DNF  3:56 7 1 0 11:56  3:11 5 1 0 3:20  0:29 1 0 0 LM 9
MEAN 9:54  2:29 427 053 0.07 11:33  2:19 373 047 0.67 2:48  0:38 1 0.13  0.27 70.83

cohesive, multimodal user interaction. From participant in-
teractions, one striking observation was the diverse ways in
which participants approached their programming tasks. Users
were able to verbally direct the robot in flexible, natural ways,
without being forced to adhere to the strict formatting and
syntax required by traditional programming systems. These
commands ranged from statements like P8, “The user will hand
you a can of pringles in zone 1, then move it to the lower shelf,”
to P10 “Once an object is in dish area for 15 seconds move
it to the bottom shelf” and P11, “If you see an object on the
table move it to zone 1.” Our evaluation found that participants
were generally effective using MARCER to complete the three
tasks. Across all trials, only two (4.44%) tasks were failed
due to invalid LLM generated plans that participants could not
recover from. However, we observed that MARCER fell short
in communicating system failures effectively. Therefore, future
systems should not only communicate their capabilities, but also
why specific actions fail. Still, MARCER’s high success rate
provides strong support for the power of combining the simple
and intuitive structure of TAP with the translation capabilities
of LLMs, and we argue that future systems should empower
users to communicate programs their own way.

A. Limitations and Future Work

World State Estimation: One limitation of MARCER is its
reliance on a Vicon motion capture system for object tracking.
One way to address this is to integrate a perception pipeline
that combines data from the robot and ARHMD sensors
to continuously estimate a model of the real world while
incorporating advanced Vision-Language Models (VLMs).

TAP Expressions: Further extensions might also utilize
more of the expressive power of TAP for robotics. For
example, Huang and Cakmak [101], highlight nine trigger-
action programming pairs that match a user’s mental model.
These pairs, such as While-Do, As-Long-As-Do, and If-When-
Then, could extend our set and improve user interaction.

Finally, future work can conduct further evaluations, in-
cluding against other robot programming systems and with
larger and more representative samples of novice users to better
understand trade-offs and produce more generalizable results.

VII. CONCLUSION

This paper introduces MARCER, a multimodal system for
composing and refining robot trigger-action rules for everyday
tasks. MARCER integrates natural language processing with
an Augmented Reality Head-Mounted Display (ARHMD) to
provide hands-free interaction and visual feedback within the
context of robot activities. We demonstrate how MARCER
enables users to set up various home-assistance tasks and
characterize performance in a system evaluation. By combining
the expressive power of trigger-action programming, natural
language verbal input, and augmented reality visual feedback,
we pave the way for seamless integration of general-purpose
robot assistants in the home.
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