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Abstract—In this work, we combine the strengths of humans 
and robots by developing MARCER, a novel interactive and 
multimodal end-user robot programming system. MARCER 
utilizes a Large Language Model to translate users’ natural 
language task descriptions and environmental context into Action 
Plans for robot execution, based on a trigger-action programming 
paradigm that facilitates authoring reactive robot behaviors. 
MARCER also affords interaction via augmented reality to help 
users parameterize and validate robot programs and provide 
real-time, visual previews and feedback directly in the context 
of the robot’s operating environment. We present the design, 
implementation, and evaluation of MARCER to explore the 
usability of such systems and demonstrate how trigger-action 
programming, Large Language Models, and augmented reality 
hold deep-seated synergies that, when combined, empower users 
to program general-purpose robots to perform everyday tasks. 

Index Terms—End-user Robot Programming; Human-Robot 
Collaboration; Large Language Models; Augmented Reality; 

I. INTRODUCTION 

Robots excel at simple and repetitive tasks, leading to their 
widespread adoption within manufacturing and warehouse 
settings [1]–[3]. However, these situations often require an 
expert programmer to design and validate robot programs in a 
structured environment, making it challenging to adapt them to 
new scenarios. Consequently, in domestic settings, robots are 
limited to basic, single-purpose systems in non-invasive roles 
such as vacuum cleaners or lawn mowers [4]–[6]. To expand 
their role within the home, general-purpose robots must be 
capable of executing a diverse set of complex and potentially 
interactive or collaborative tasks while communicating with 
everyday users to understand and conform to their preferences 
[7]–[15]. These tasks might range from practical chores such as 
washing dishes or putting away groceries to social interactions 
such as greeting people who walk into the home [16]–[18]. 
In pursuit of this goal, we develop MARCER: Multimodal 
Augmented Reality for Composing and Executing Robot Tasks. 

*These authors contributed equally to this work. 
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Fig. 1: MARCER, a multimodal robot programming system 
that combines natural language and augmented reality to 
build trigger-action rules. A large language model combines 
commands such as “Move the groceries on the table to the 
shelves” with environmental context to generate reactive robot 
programs. AR allows users to set constraints and preview 
actions through digital twins, directly in their workspace. 

MARCER enables users to build trigger-action programs using 
natural language, while offering customization and visual 
feedback via augmented reality. Our system helps bridge the 
gap between users, who know their own high-level goals, and 
robots, which possess various low-level capabilities. 

MARCER aims to improve robot programming, which 
can be a cognitively taxing skill for end-users. One of our 
insights is to leverage Trigger-Action Programming (TAP) to 
simplify this process, enabling end-users to construct reactive 
programs without prior coding experience [19]. Through 
reactive programs, users defne trigger-action pairs where, upon 
meeting the trigger conditions, the related actions are executed. 
The success of TAP has led the robotics community to begin 
developing TAP systems that enable non-expert users to craft 
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reactive social robot behaviors [20] and coordinate robot actions 
in collaborative tasks [21], [22]. These systems provide initial 
evidence that end-users with little or no prior experience may 
quickly learn and successfully apply the TAP paradigm to robot 
programming. 

While promising, prior TAP systems have required users to 
manually specify TAP rules and Action Plans on a physical 
interface, such as a handheld tablet or static computer screen. 
Instead, we propose incorporating Large Language Models 
(LLMs) to generate rules to be executed on a robot from natural 
language input. When combined with contextual information 
from the environment, LLMs have been shown to generate 
action plans that can be successfully executed by robots [8]– 
[15], [23], [24]. Building on prior work [15], [23], MARCER 
leverages environment information to generate robot rules from 
user speech. Critically, users can also provide verbal feedback, 
ensuring the generated rules align with their expectations. 

We designed MARCER to enhance the programming process 
by providing visual feedback for sensemaking, the process of 
constructing meaning from information [25]. As robots operate 
in the real physical world, MARCER provides Augmented 
Reality (AR) visualizations to convey in situ programming 
information, which can be a more effective way to present 
robot data compared with 2D interfaces [26], [27] and enhance 
user abilities in grasping contextual details essential for task 
completion [28]–[31]. In MARCER, we design and evaluate 
the frst integration of TAP, verbal task specifcation, and AR 
visual feedback in a single holistic system. 

Contributions: We present MARCER, a novel robot pro-
gramming system that merges the capabilities of natural 
language and AR to offer a seamless multimodal experience. 
We showcase a deployment of MARCER on a Fetch mobile 
manipulator robot [32] and evaluate our system with 15 
participants. Our key contributions are as follows: (1) A system 
design for multimodal robot programming that integrates 
verbal commands and AR to interface with users, (2) An 
exploration into our system’s capabilities and usability, and 
(3) An open source implementation of our system found at 
https://github.com/hri-ironlab/MARCER.git. We demonstrate 
how the capabilities of multimodal systems open new possibil-
ities for interactions between people and robots. 

II. RELATED WORK 

MARCER integrates end-user robot programming, LLM-
powered natural language interaction, and mixed reality inter-
faces to create a multimodal system for human-robot interaction. 
Below, we discuss relevant work in each of these areas. 

A. End-User Robot Programming 

End-user robot programming tools help users without 
coding experience program robots. These tools use various 
programming paradigms such as block-based [33]–[35], goal-
oriented [36], behavior trees [37], [38], or fow-based [39], [40] 
programming. A shared focus among these approaches is visual 
programming, where action primitives are presented as nodes 
that users connect to form action plans. Visual programming 

abstracts away the complexity of low-level joint control, 
making it easier for users to create robot programs. Another 
approach gaining traction is Trigger Action Programming 
(TAP), commonly used in Internet of Things (IoT) applications 
like SmartThings, If-This-Then-That, and Zapier. TAP has since 
expanded into end-user programming for home automation and 
interactive applications [41]–[46] and recently for personalized 
social robot behavior [20], and human-robot collaboration [21], 
[22]. Our work builds on this by combining TAP with AR and 
linking natural language commands directly to the real world. 

B. Large Language Models for Robot Planning 

The scientifc community is actively investigating how to 
automatically parse and ground natural language into actionable 
steps for robots. Large Language Models, which are trained 
using internet-scale text datasets, appear particularly well-suited 
to this task and have demonstrated considerable abilities to 
comprehend diverse concepts and generalize across domains 
with minimal examples [15], [23], [47]–[57]. MARCER follows 
a promising approach suggested by recent work where users 
prompt a LLM with high-level tasks, which, combined with the 
context of the environment, is used to generate template action 
plans in terms of known robot behaviors (pre-programmed low-
level actions such as pick, place, etc.) [8]–[14]. For instance, 
Berk Karli et al. 2024 [24] show how approaching robot 
programming with an LLM may enable users to provide 
minimally constrained text commands. MARCER extends such 
systems by enabling interaction via spoken natural language, 
rather than typed text, which we believe is a more intuitive and 
hands-free approach to robot programming, and embedding 
this interaction within a TAP paradigm. 

C. AR Programming Feedback 

Providing visual feedback to users during programming and 
debugging is crucial to enhance user experience and aid in 
identifying and resolving issues. In designing MARCER, we 
leverage AR to provide this feedback and related contextual 
information in situ within a user’s environment. Several 
modalities for AR exist, ranging from video overlays on 
traditional computer screens [58]–[60], mobile tablet AR [61]– 
[64], projector overlays [65]–[67], and augmented reality head 
mounted displays (ARHMD) [68]–[74]. Recent research has 
shown that programming tools may utilize AR to improve situa-
tional awareness, system usability, and overall user interactions 
(see [27], [46], [75]–[79] for recent surveys of mixed reality 
robotics). Therefore, in MARCER we employ an ARHMD to 
deliver programming feedback in a hands-free experience. 

D. Multimodal Robot Programming Interfaces 

Prior research has investigated how to provide users with rich 
sensory information regarding robots and their environments by 
combining different modalities [80], [81]. For example, prior 
work has explored interfaces that combine force sensing with 
vision [82], gaze with voice [83], speech with gestures [84], 
or natural language text with block-programming [33]. Most 
similar to our work is that of Marin et al. 2005 [85], Akan 
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(a) Initial planning phase (b) Adding a location preference (c) Approving the new plan (d) Executing the plan 

Fig. 2: As depicted in Fig. 1, a user begins with a command such as, “Move the food that is on the table to the shelves.” (a) 
MARCER then generates an associated trigger-action rule while highlighting relevant objects and surfaces through AR (orange 
wireframes). In this case, (b) the user provides feedback, specifying preferred placement locations using 3D virtual zones within 
the workspace (blue rectangles) and verbal feedback (“Actually put the food in zone 6”). (c) The updated rule is presented with 
visual highlights, and the system awaits the user’s approval or further edits. (d) Upon approval, users can preview actions via 
AR digital twins showing the current, future, and fnal states of relevant objects, and simulated robot movements. 

et al. 2011 [86], and Huang et al. 2019 [87] who implement 
voice commands and AR to facilitate robot programming. In 
contrast to these systems, which rely on 2D AR overlays or 
language commands for single action primitives, our system 
combines an ARHMD with a LLM to provide 3D spatial input 
and feedback. This allows users to freely interact with their 
workspace, while building TAP rules through natural language, 
enabling users to create programs that address real-world tasks. 

III. SYSTEM DESIGN 

MARCER affords multimodal user interaction where users 
provide input through both natural language (i.e., spoken 
commands to specify goals, refne plans, and interact with 
the AR menu) and gestures, which are used to defne 3D AR 
zones relevant to particular robot activities, while also receiving 
visual AR feedback. Apart from manipulating the 3D zones, 
users may interact with the interface in a hands-free manner 
by utilizing verbal input. An example workfow for a direct 
command is depicted in Fig. 2, while an example for building 
a trigger-action command is depicted as follows: 
1) A user creates a trigger zone by saying “spawn zone.” When 

an object or user enters this zone, any associated actions 
will be executed. Users can create multiple zones, such 
as one for indicating where a robot can grab objects and 
another for where to place them. In addition to zones, users 
can defne triggers relevant to locations, time, or both. 

2) To generate a TAP rule, the user says the key phrase “Hey 
Fetch,” followed by a conditional command such as, “If I 
place groceries in zone one, move them to the middle shelf.” 
The system then plans a function, comprised of action 

primitives, for moving the groceries from zone one to the 
middle shelf while highlighting relevant objects, surfaces, 
or zones. These highlights help users quickly preview which 
elements are involved in the plan. 

3) Users can edit their initial command. For instance, if the 
user wants the groceries placed in a specifc area on the 
shelf, they can position a second zone on a subsection of 
the shelf and say, “Place them in zone two instead.” This 
prompts the system to adjust its plan and highlight the 
newly relevant items. Once satisfed, users can approve the 
fnal rule by saying “approve.” 

4) When the triggering conditions of a stored rule are met, the 
system executes the associated actions. During execution, 
visualizations display groceries being placed in zone two, 
including relevant highlights, robot trajectories, and current 
and future object positions. Users can stop the robot and 
redo the process at any time by saying “stop robot,” or 
continue to create more rules. 

To enable this workfow, our system takes inspiration from prior 
work in robot programming tools [20], [22], [24], augmented 
reality robotics interfaces [21], [88]–[90] and LLM research 
[8]. MARCER is composed of: (1) Visual Interface, (2) Speech 
Processor, (3) Rule Generator, (4) Large Language Model, 
(5) Rule Monitor, (6) Scene Graph, (7) Object Tracker, (8) 
Planning Scene, (9) Action Dispatcher, and (10) Manipulation 
Node. Fig. 3 illustrates these components and is detailed below. 

A. Visual Interface and Speech Processor 

To facilitate multimodal interaction, users can author robot 
programs using an AR visual interface (see Fig. 4) and voice 
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Fig. 3: After a spoken command, the Speech Processor converts it to text, which is sent to the Rule Generator. The Rule 
Generator collaborates with the LLM to create rules, displays feedback via the Visual Interface, and sends approved rules to 
the Rule Monitor. The Rule Monitor evaluates each condition, querying the LLM for unknown conditions as needed. The 
Scene Graph, updated by the Object Tracker, defnes relationships between objects, surfaces, users, and zones, sharing this data 
system-wide. The Action Dispatcher works with the Manipulation Node to plan and execute the Rule Monitor’s Action Plan. 

commands. The Visual Interface allows users to create, resize, 
and move 3D zones that specify when to trigger an action 
or where to place objects. By grounding these zones in the 
real world, users can specify locations that require depth 
information such as shelves or object handover locations 
in space, overcoming the limitations of 2D interfaces that 
often provide a single top-down view of a workspace. This 
approach also enables us to overlay the robot’s digital twin for 
visualization of planned motion trajectories. To minimize visual 
clutter, labels for surfaces, objects, and zones appear only when 
a user’s gaze activates them. Additionally, a menu within the 
user’s workspace displays text information to communicate 
program states (see Fig. 2). This includes user commands, 
rule feedback, a description of the generated TAP rule, and 
the current action being planned or executed. Also listed are 
active, inactive, and executing rules for user reference and 
management. Users can operate the visual interface entirely 
through voice commands, freeing the user’s hands for tasks. We 
see this as a crucial requirement for scenarios that require robot 
assistance, where a user’s hands may already be engaged. For 
example, the user may be washing dishes, unloading groceries, 
or folding laundry, while desiring the robot to put away cleaned 
dishes, grocery items, or folded clothes, analogous to human-
human collaborative work. To navigate the interface, users 
can trigger buttons using voice commands mapped to specifc 
interface menu keywords, such as “spawn zone” for creating 
a zone or “stop robot” to stop execution immediately in case 
of unexpected robot actions. To send instructions to the robot, 
the Speech Processor listens for the wake word, “Hey Fetch,” 
sending the subsequent instruction to the Rule Generator. 

B. Rule Generator and Large Language Model 
The Rule Generator analyzes verbal commands by querying 

a LLM in three different stages: Trigger Detector, Function 

Fig. 4: The visual interface can be placed anywhere in AR. 
Active rules appear on the left panel, with executing rules 
highlighted. Users can also view descriptions of each rule. 
Objects and locations are highlighted orange during execution. 

Generator, and Description Generator. Each stage uses prompts 
constructed from a reference dataset of 54 manually annotated 
examples containing a user command, its trigger condition, 
relevant environmental context, and a corresponding Python 
TAP function (see https://github.com/hri-ironlab/MARCER.git 
for the dataset and the Appendix for example prompts). While 
the LLM can operate independently, providing a reference 
dataset has been found to improve the quality of the generated 
output [8], [13]. 

Trigger Detector: In the frst stage, the Trigger Detec-
tor queries the LLM with a prompt containing both the 
user’s spoken command and a set of example command-
trigger pairs to identify the intended trigger type. Currently, 
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MARCER supports four types of triggers, a location trigger 
of the kind “If an object/person is in [location], then 
[desired_action]” (e.g., “If a dish is on the table, put it 
in the sink” or “When I get back, if I enter Zone 1, hand 
me food from the shelf”), a timed trigger of the format 
“If [desired_time] has passed, [desired_action]” 
(e.g., “In 10 minutes, pour me a glass of water” or “In 1 hour, 
put the food on the table”), a timed location trigger of the 
format “If an object/person has been in [location] for 
[desired_time], [desired_action]” (e.g. “When-
ever any object has been in Zone 1 for 5 minutes, move it to the 
middle shelf” or “If the glass has been sitting on the table for 30 
seconds, pour some water in it”), and a null trigger for handling 
immediately executable commands, such as “move the mustard 
from the table to the shelf.” MARCER does require each 
command to begin with the keywords “Hey Fetch” followed by 
a conditional statement or a direct command. However, rather 
than forcing users to adhere to a strict conditional format, 
MARCER seeks to match what was said to one of our four 
trigger types. This provides users with the freedom to verbally 
specify their commands however they like. After inferring the 
trigger type, this information is sent to the Function Generator. 

Function Generator: The Function Generator queries the 
LLM to generate a Python function that represents the user’s 
command as a trigger-action rule. By directly producing and 
executing Python code at runtime, MARCER eliminates the 
need to translate task descriptions into executable code. To 
enable this, the query utilizes a prompt constructed with 
examples tailored to the specifc trigger type from the dataset. In 
addition, the Scene Graph (see §III-E) provides relevant names 
and locations of objects and surfaces within the scene. This 
information is added to the prompt along with any corrective 
feedback the user may have provided to fx prior generated 
rules. To evaluate triggers (e.g., “If a dish is on the table, put 
it in the sink” has the trigger “dish is on the table”, or “Put 
all food on the table” should execute for all objects of type 
“food”) and dynamically changing environments, we designed a 
primitive function check_condition that can be included 
in the generated function. When executed by the Rule Monitor 
(see §III-C), if it returns true, the associated actions are passed 
to the Action Dispatcher (see §III-D). In case of an unknown 
condition, the function queries the LLM for a truth value. 

Description Generator: The Description Generator queries 
the LLM to summarize the output Python function in plain 
language that non-programmers can understand. Users can then 
review this summary and decide if it matches their expectations. 
If not, they can provide verbal feedback for recomputing the 
plan. MARCER incorporates each round of feedback until the 
user is satisfed with the generated function output, which, 
once approved, is forwarded to the Rule Monitor. 

C. Rule Monitor 

MARCER currently supports the If-Then TAP rule paradigm, 
with potential for future expansion. An If-Then rule triggers 
an action once its If condition is met. For example, “If an 
object is in [Zone 1], then [move all objects from Zone 1 to 

the shelf]” or “If a dish is on the dish area for [10 minutes], 
move it to the bottom shelf”, which MARCER formulates 
as “If a dish is on the [dish area] and [10 minutes] have 
passed, then [move it to the bottom shelf]”. The Location 
Triggers are based on “surfaces,” like tables or shelves in the 
environment, and user-defned “zones” that can exist anywhere 
in 3D space (for example, a user might create a midair zone for 
object handovers). To evaluate location conditionals, the Rule 
Monitor queries the Scene Graph to check whether objects 
satisfy an “is on” or “is in” relationship. For Timed Triggers, 
the Rule Monitor stores a new timestamp when a rule is initially 
added to the monitoring list, or when an object moves into 
a time-restricted location. During each conditional check, if 
the elapsed time with respect to the initial stored timestamp 
exceeds the specifed threshold in the rule, the Rule Monitor 
triggers the associated actions. Users can create, edit, or delete 
rules when the robot is ready for commands, during rule setup, 
or while providing verbal feedback. 

D. Action Dispatcher 

When a rule trigger evaluates to true, the Action Dispatcher 
executes its associated actions by coordinating with the Ma-
nipulation Node (§III-F). This includes managing the planning 
and execution of actions or activating fallback measures when 
necessary. For example, if execution fails because sensed joint 
positions deviate from the motion plan’s tolerance, the system 
replans from the current robot state and retries the action. The 
Action Dispatcher continues to broadcast state updates and 
feedback, enabling other components to monitor the progress 
of manipulation tasks. Once all actions for a TAP rule succeed, 
the next triggered rule can be executed. 

E. Scene Graph and Object Tracker 

The Scene Graph and Object Tracker are used to compute 
the positions and relationships of objects, surfaces, and zones 
in the scene. These object poses, along with zone poses and 
dimensions from the visual interface, are fed into the Scene 
Graph. Scene graphs are commonly utilized in robotics for 
creating a shared 3D world model to be queried by different 
components in a robotic system. Our Scene Graph component 
currently consists of nodes representing objects, zones, and 
surfaces, each storing attributes such as position, orientation, 
and size. After each update loop, the Scene Graph computes 
its edges, representing relationships between nodes. Currently 
supported are the “is on” relationships between an object and 
a surface and the “is in” relationships between an object and 
a zone. This relationship is utilized by the Rule Generator for 
building TAP rules relevant to the scene, Rule Monitor for 
checking conditions, and the Manipulation Node to calculate 
allowable surface collisions during pick-and-place operations. 

F. Manipulation Node and Planning Scene 

MARCER creates functions composed of known primitive 
actions that, when combined, can accomplish a variety of 
household tasks. Currently, MARCER supports six primitive 
actions: pick, place, pour, wipe surface, wave, and dance. To 
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execute these actions, the Action Dispatcher sends the current 
action to the Manipulation Node, which then coordinates with 
the Planning Scene. Upon receiving a manipulation plan request, 
the Planning Scene takes a snapshot of the world objects, 
surfaces, and robot pose by querying the Scene Graph. From 
this snapshot, the Manipulation Node computes a collision-free 
motion plan, which is displayed via the Visual Interface. The 
robot executes the plan through its joint controller. 

IV. SYSTEM IMPLEMENTATION 

Robot Platform and Object Tracking: MARCER currently 
works with the Fetch robot, a 7 degree-of-freedom mobile 
manipulator [32]. Within the Manipulation Node, MARCER 
utilizes the MoveIt! Task Constructor (MTC) to plan and 
execute manipulation actions [91]. MARCER’s motion planning 
time averaged 7.62 seconds/plan (SD = 1.50 sec.). One beneft 
to MTC, is its compatibility with over 150 robot platforms 
using MoveIt! Thus, MARCER can be adapted to other robots 
by swapping the MoveIt! confguration profles provided by 
other platforms. To track objects within the scene, we use a 
Vicon motion capture system as robust perception was not the 
focus on this work; future systems could leverage the robot 
and ARHMD sensors to replace external tracking. By placing 
refective markers on the robot and scene objects, we can track 
the position and orientation of objects in the scene relative to 
the robot. This information is passed to the Scene Graph to be 
read by other components. Currently, our setup (depicted in 
Fig. 5a), includes four surfaces, the middle shelf, bottom shelf, 
dish area, and table and a combination of common household 
items including food, drinkware, and a sponge. 

AR Interface: For our visual interface, we use the Microsoft 
HoloLens 2 ARHMD. We use the Unity game engine and the 
Mixed Reality Toolkit to build and stream holograms to the 
ARHMD [92]. To align the holograms and the real world in 
the AR camera space, we follow a two-step process. First, 
we match the origin of a fducial marker tracked by the AR 
headset [93] with a corresponding point in the Vicon tracking 
space. Then, the positions of the tracked objects and the robot 
are transformed into the fducial marker’s coordinate system, 
aligning their virtual representations in the HoloLens. With 
this approach, we are also able to translate the position and 
orientation of virtual zones to the real world. 

Speech Processing and Large Language Model: To 
enable natural language input, our speech processor utilizes 
the Windows Keyword Recognition Subsystem, PyAudio, and 
the Whisper speech recognition model [94]. To navigate the 
AR interface, users can trigger buttons using voice commands 
mapped to specifc keywords. To recognize commands to send 
to the Rule Generator, the Speech Processor listens for the key 
phrase, “Hey Fetch.” Once recognized, the instruction following 
the key phrase is sent to the Rule Generator. We implement our 
Large Language Model using the GPT-4o [57], [95] model 
offered by the OpenAI API [96]. 

Hardware and Communication: Our system operates on 
two desktops equipped with an NVIDIA RTX 3080 GPU. One 
of the machines has a Windows 11 operating system, and runs 

the Vicon tracking software and our Unity application. Vicon 
tracking data is transmitted to the second desktop via a Python 
socket. The second desktop has a Ubuntu 20.04 operating 
system, and hosts the back-end of our programming system 
on Robot Operating System (ROS), a framework designed 
for developing robot software. The ROS TCP Endpoint and 
Connector [97] connect Unity to ROS, enabling accurate 
visualizations of the robot and object states. 

V. SYSTEM EVALUATION 

We conducted an IRB-approved study to explore how users 
interact with MARCER. Participants completed three robot-
assisted tasks modeled after everyday scenarios: (1) Kitchen 
Cleanup, (2) Item Storing, and (3) Object Handover. These 
tasks involve defning object placements, triggers for actions, 
and creating combinations of actions, and as such we believe 
MARCER may also apply to more specialized tasks such as 
object assembly [21], [22], [98] or chemistry experiments [24], 
which require similar specifcations. 
Task 1. Kitchen Cleanup: (20 minute cap) Participants 
programmed the robot to clean the kitchen area (see Fig. 5b). 
To be considered clean, objects needed to remain in the dish 
area for 15 seconds (mimicking being rinsed), then be placed 
on the bottom shelf. Users were told to build a repetitive rule 
for this task to handle multiple dishes. Next, users programmed 
the robot to clean the bottle, pour the contents of the glass 
into the cup, and have the robot clean the glass. After the user 
moved the cup to the side table and the main table was empty, 
the robot needed to wipe the main table with the sponge. 
Task 2. Item Storing: (20 minute cap) Participants pro-
grammed the robot to move the objects from the table to 
the shelves. While the glass and cup could be placed anywhere 
on the bottom shelf, participants needed to defne a food storage 
area by placing a zone in the outlined space on the middle 
shelf. See Fig. 5c for the initial setup of the scene. 
Task 3. Object Handover: (10 minute cap) Participants 
programmed the robot to trigger a handover when an object 
was held in a particular zone in 3D space. Once programmed, 
the user held the object in the zone to complete the handover. 

A. Procedure 

Participants frst read and signed a consent form. An 
examiner then guided them through a 30 minute training 
script, which included creating a direct command, a one-time 
rule that executed and deleted itself, and a repetitive rule that 
continued to check for execution. The examiner explained the 
visualizations, how to provide verbal feedback, how to delete 
rules, and how to view active rules and their descriptions, 
answering any questions along the way. After successfully 
completing the tutorials, participants read over the frst task, 
Kitchen Cleanup, while the experimenters set up the scene. 
The task began when participants made their frst interaction 
with the interface. Once the task was completed or time ran 
out, the task was ended. This procedure was repeated for 
Task 2 and Task 3. After Task 3, participants completed a 
survey that included the System Usability Scale (SUS) [99], 
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(a) Workspace (b) Task 1: Kitchen Cleanup (c) Task 2: Item Storing (d) Task 3: Object Handover 

Fig. 5: The robot can move (a) the Scene Objects between the “Middle Shelf”, “Bottom Shelf”, “Dish Area”, and “Table.” In 
Task 1 (b), users programmed the robot to clean the dishes by moving them to the “Dish Area” for 15 seconds, placing them 
on the bottom shelf, and wiping the table. In Task 2 (c), users defned a virtual zone on the left side of the “Middle Shelf” and 
instructed the robot to move food to that zone and place a glass and cup anywhere on the bottom shelf. In Task 3 (d), users 
placed a virtual zone in 3D space for triggering a handover, prompting the robot to grab the object from the user’s hand. 

demographic information, and subjective feedback, followed 
by a semi-structured interview. The training script, task sheets, 
survey, and interview guide are included in our git repository. 

B. Measures 

We collected a series of measurements to characterize our 
system using data collected from participants. These include 
task completion time, total time spent programming, the number 
of times users created a one-time command or repetitive rule, 
gave verbal feedback, or rejected rules, and types of errors 
encountered. We categorized the errors into fve types: T: 
Vicon tracking error, R: Robot manipulation error, L: LLM 
logic error/hallucination, H: Headset error, and M: Microphone 
error. Please see the Appendix for more details. 

C. Participants 

For this study we recruited 15 participants (9 male, 6 female) 
with ages ranging from 18–50 (M = 25.6, SD = 7.67). Thirteen 
(86.6%) participants reported having three or more years 
of programming experience and eight (53.3%) participants 
reported owning an IoT device. On a single item 1–7 scale (7 
= most familiar), participants reported their average familiarity 
with robotics as 3.2 (SD = 2.11), VR/AR technologies as 4.1 
(SD = 1.81), and TAP as 5.8 (SD = 1.42). 

D. Findings 

Table I summarizes the objective data from our system 
evaluation. Ten (66.67%) participants completed all three tasks, 
while two (13.33%) did not fnish the frst task, and three (20%) 
did not fnish the second within the time limits. The two who 
failed Task 1 commanded the robot to clean the glass with a 
sponge instead of following the instructions of leaving it in the 
dish area for 15 seconds. Although valid in the real world, this 
method exceeded the robot’s capabilities, preventing it from 
planning and executing the action. In Task 2, two participants 
placed an object on the table in a position the robot could 
not reach, leading it to continuously fail to plan a trajectory 
to pick it up. The third participant created a rule that moved 
all food objects, even those already on the shelf, to the food 
storage area. This left no space for the fnal object, and the 
participant did not debug the issue in time. 

The participants’ programming time for all tasks (M = 5:36, 
SD = 4:07) including the LLM plan generation time (M = 4.69 
sec./query, SD = 2.41 sec.) contributed to just 27% of the total 
experiment time (M = 20:37, SD = 8:21). Surveys showed that 
users found creating conditional rules straightforward, with 
both location-based triggers (M = 6.4, SD = 1.30) and time-
based triggers (M = 6.4, SD = 0.91) rated to be easy to create. 
Users often opted to set rules using the triggers, as pointed out 
by P11: “The autonomous repetitive task feature made it very 
easy. For the second scenario it was quite easy to automate 
the entire process without needing to re-command” and P14: 

“Having repeated rules made it easier so I did not have to 
say multiple commands”. When asked about the rule editing 
mechanism, P15 noted that “[giving feedback] defnitely helped 
a lot when the task given in the frst place was wrong and it 
made changing statements easier. It also saved time in a way.” 
Along the same lines, P9 mentioned that “The feedback system 
helped a lot because I made a lot of mistakes and I wanted to 
edit things.” 

Users also agreed that the interaction with the robot was 
fuent (M = 5.13, SD = 1.73) and became more fuent over 
time (M = 6.07, SD = 1.10), as noted by P6: “At frst I felt 
adversarial to the robot, but by the end we were a team.” User 
comments such as P4: “seeing what the robot was gonna 
do before it actually performed the action made the whole 
thing really friendly,” P1: “I think like I didn’t really struggle 
with making the rules because I just said it how I thought I 
would naturally say it in general, and the response it gave 
me was pretty intuitive and matched what I was looking for,” 
and P8: “Having the robot explain the thought process and 
actions it was going to take before actually taking them [made 
it easier]” point to MARCER’s integration of the AR previews, 
unconstrained speech commands, and natural language plan 
description being particularly useful. The system received a 
SUS score of 70.83 (SD = 16.39), indicating “above average” 
usability [100]. 

VI. DISCUSSION 

MARCER demonstrates the design and development of 
a state-of-the-art robot programming interface that provides 
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TABLE I: Metrics obtained include task completion time and whether they did not fnish (DNF) in the allotted time, total time 
spent programming, number of rules created for the task, number of times feedback was provided, number of times a rule was 
rejected, and the System Usability Score. Errors encountered include T: Vicon Tracking error, R: Robot manipulation error, L: 
LLM logic error/hallucination, H: Headset error, and M: Microphone error (see the Appendix for more details). 
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cohesive, multimodal user interaction. From participant in-
teractions, one striking observation was the diverse ways in 
which participants approached their programming tasks. Users 
were able to verbally direct the robot in fexible, natural ways, 
without being forced to adhere to the strict formatting and 
syntax required by traditional programming systems. These 
commands ranged from statements like P8, “The user will hand 
you a can of pringles in zone 1, then move it to the lower shelf,” 
to P10 “Once an object is in dish area for 15 seconds move 
it to the bottom shelf” and P11, “If you see an object on the 
table move it to zone 1.” Our evaluation found that participants 
were generally effective using MARCER to complete the three 
tasks. Across all trials, only two (4.44%) tasks were failed 
due to invalid LLM generated plans that participants could not 
recover from. However, we observed that MARCER fell short 
in communicating system failures effectively. Therefore, future 
systems should not only communicate their capabilities, but also 
why specifc actions fail. Still, MARCER’s high success rate 
provides strong support for the power of combining the simple 
and intuitive structure of TAP with the translation capabilities 
of LLMs, and we argue that future systems should empower 
users to communicate programs their own way. 

A. Limitations and Future Work 

World State Estimation: One limitation of MARCER is its 
reliance on a Vicon motion capture system for object tracking. 
One way to address this is to integrate a perception pipeline 
that combines data from the robot and ARHMD sensors 
to continuously estimate a model of the real world while 
incorporating advanced Vision-Language Models (VLMs). 

TAP Expressions: Further extensions might also utilize 
more of the expressive power of TAP for robotics. For 
example, Huang and Cakmak [101], highlight nine trigger-
action programming pairs that match a user’s mental model. 
These pairs, such as While-Do, As-Long-As-Do, and If-When-
Then, could extend our set and improve user interaction. 

Finally, future work can conduct further evaluations, in-
cluding against other robot programming systems and with 
larger and more representative samples of novice users to better 
understand trade-offs and produce more generalizable results. 

VII. CONCLUSION 

This paper introduces MARCER, a multimodal system for 
composing and refning robot trigger-action rules for everyday 
tasks. MARCER integrates natural language processing with 
an Augmented Reality Head-Mounted Display (ARHMD) to 
provide hands-free interaction and visual feedback within the 
context of robot activities. We demonstrate how MARCER 
enables users to set up various home-assistance tasks and 
characterize performance in a system evaluation. By combining 
the expressive power of trigger-action programming, natural 
language verbal input, and augmented reality visual feedback, 
we pave the way for seamless integration of general-purpose 
robot assistants in the home. 

VIII. ACKNOWLEDGMENTS 

This work was supported by NSF Award #2222953. 

Session 5A: Extended Reality (XR) HRI 2025, March 4-6, 2025, Melbourne, Australia

536
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES 

[1] Abderraouf Maoudj Abdelfetah Hentout, Mustapha Aouache and Isma 
Akli. Human–robot interaction in industrial collaborative robotics: a 
literature review of the decade 2008–2017. Advanced Robotics, 33(15-
16):764–799, 2019. 

[2] Eloise Matheson, Riccardo Minto, Emanuele G. G. Zampieri, Maurizio 
Faccio, and Giulio Rosati. Human–robot collaboration in manufacturing 
applications: A review. Robotics, 8(4), 2019. 

[3] S. Robla-G´ alez-Sarabia,omez, Victor M. Becerra, J. R. Llata, E. Gonz´ 
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