2025 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI) | 979-8-3503-7893-1/25/$31.00 ©2025 IEEE | DOI: 10.1109/HRI61500.2025.10974232

Session 5A: Extended Reality (XR)

HRI 2025, March 4-6, 2025, Melbourne, Australia

MARCER: Multimodal Augmented Reality for
Composing and Executing Robot Tasks

Bryce Ikeda”

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC, USA
bikeda@cs.unc.edu

LillyAnn Nekervis
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC, USA
Inekervis @unc.edu

Abstract—In this work, we combine the strengths of humans
and robots by developing MARCER, a novel interactive and
multimodal end-user robot programming system. MARCER
utilizes a Large Language Model to translate users’ natural
language task descriptions and environmental context into Action
Plans for robot execution, based on a trigger-action programming
paradigm that facilitates authoring reactive robot behaviors.
MARCER also affords interaction via augmented reality to help
users parameterize and validate robot programs and provide
real-time, visual previews and feedback directly in the context
of the robot’s operating environment. We present the design,
implementation, and evaluation of MARCER to explore the
usability of such systems and demonstrate how trigger-action
programming, Large Language Models, and augmented reality
hold deep-seated synergies that, when combined, empower users
to program general-purpose robots to perform everyday tasks.

Index Terms—End-user Robot Programming; Human-Robot
Collaboration; Large Language Models; Augmented Reality;

I. INTRODUCTION

Robots excel at simple and repetitive tasks, leading to their
widespread adoption within manufacturing and warehouse
settings [1]-[3]. However, these situations often require an
expert programmer to design and validate robot programs in a
structured environment, making it challenging to adapt them to
new scenarios. Consequently, in domestic settings, robots are
limited to basic, single-purpose systems in non-invasive roles
such as vacuum cleaners or lawn mowers [4]-[6]. To expand
their role within the home, general-purpose robots must be
capable of executing a diverse set of complex and potentially
interactive or collaborative tasks while communicating with
everyday users to understand and conform to their preferences
[7]-[15]. These tasks might range from practical chores such as
washing dishes or putting away groceries to social interactions
such as greeting people who walk into the home [16]-[18].
In pursuit of this goal, we develop MARCER: Multimodal
Augmented Reality for Composing and Executing Robot Tasks.

“These authors contributed equally to this work.

Maitrey Gramopadhye”
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC, USA
maitrey @cs.unc.edu

Daniel Szafir
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC, USA
daniel.szafir@cs.unc.edu

“Move the groceries
that are on the table
to the shelves.”

—w

Fig. 1: MARCER, a multimodal robot programming system
that combines natural language and augmented reality to
build trigger-action rules. A large language model combines
commands such as “Move the groceries on the table to the
shelves” with environmental context to generate reactive robot
programs. AR allows users to set constraints and preview
actions through digital twins, directly in their workspace.

MARCER enables users to build trigger-action programs using
natural language, while offering customization and visual
feedback via augmented reality. Our system helps bridge the
gap between users, who know their own high-level goals, and
robots, which possess various low-level capabilities.

MARCER aims to improve robot programming, which
can be a cognitively taxing skill for end-users. One of our
insights is to leverage Trigger-Action Programming (TAP) to
simplify this process, enabling end-users to construct reactive
programs without prior coding experience [19]. Through
reactive programs, users define trigger-action pairs where, upon
meeting the trigger conditions, the related actions are executed.
The success of TAP has led the robotics community to begin
developing TAP systems that enable non-expert users to craft

979-8-3503-7893-1/25/$31.00 ©2025 IEEE 529
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

Session 5A: Extended Reality (XR)

reactive social robot behaviors [20] and coordinate robot actions
in collaborative tasks [21], [22]. These systems provide initial
evidence that end-users with little or no prior experience may
quickly learn and successfully apply the TAP paradigm to robot
programming.

While promising, prior TAP systems have required users to
manually specify TAP rules and Action Plans on a physical
interface, such as a handheld tablet or static computer screen.
Instead, we propose incorporating Large Language Models
(LLMs) to generate rules to be executed on a robot from natural
language input. When combined with contextual information
from the environment, LLMs have been shown to generate
action plans that can be successfully executed by robots [8]—
[15], [23], [24]. Building on prior work [15], [23], MARCER
leverages environment information to generate robot rules from
user speech. Critically, users can also provide verbal feedback,
ensuring the generated rules align with their expectations.

We designed MARCER to enhance the programming process
by providing visual feedback for sensemaking, the process of
constructing meaning from information [25]. As robots operate
in the real physical world, MARCER provides Augmented
Reality (AR) visualizations to convey in sifu programming
information, which can be a more effective way to present
robot data compared with 2D interfaces [26], [27] and enhance
user abilities in grasping contextual details essential for task
completion [28]-[31]. In MARCER, we design and evaluate
the first integration of TAP, verbal task specification, and AR
visual feedback in a single holistic system.

Contributions: We present MARCER, a novel robot pro-
gramming system that merges the capabilities of natural
language and AR to offer a seamless multimodal experience.
We showcase a deployment of MARCER on a Fetch mobile
manipulator robot [32] and evaluate our system with 15
participants. Our key contributions are as follows: (1) A system
design for multimodal robot programming that integrates
verbal commands and AR to interface with users, (2) An
exploration into our system’s capabilities and usability, and
(3) An open source implementation of our system found at
https://github.com/hri-ironlab/MARCER.git. We demonstrate
how the capabilities of multimodal systems open new possibil-
ities for interactions between people and robots.

II. RELATED WORK

MARCER integrates end-user robot programming, LLM-
powered natural language interaction, and mixed reality inter-
faces to create a multimodal system for human-robot interaction.
Below, we discuss relevant work in each of these areas.

A. End-User Robot Programming

End-user robot programming tools help users without
coding experience program robots. These tools use various
programming paradigms such as block-based [33]-[35], goal-
oriented [36], behavior trees [37], [38], or flow-based [39], [40]
programming. A shared focus among these approaches is visual
programming, where action primitives are presented as nodes
that users connect to form action plans. Visual programming

HRI 2025, March 4-6, 2025, Melbourne, Australia

abstracts away the complexity of low-level joint control,
making it easier for users to create robot programs. Another
approach gaining traction is Trigger Action Programming
(TAP), commonly used in Internet of Things (IoT) applications
like SmartThings, If-This-Then-That, and Zapier. TAP has since
expanded into end-user programming for home automation and
interactive applications [41]-[46] and recently for personalized
social robot behavior [20], and human-robot collaboration [21],
[22]. Our work builds on this by combining TAP with AR and
linking natural language commands directly to the real world.

B. Large Language Models for Robot Planning

The scientific community is actively investigating how to
automatically parse and ground natural language into actionable
steps for robots. Large Language Models, which are trained
using internet-scale text datasets, appear particularly well-suited
to this task and have demonstrated considerable abilities to
comprehend diverse concepts and generalize across domains
with minimal examples [15], [23], [47]-[57]. MARCER follows
a promising approach suggested by recent work where users
prompt a LLM with high-level tasks, which, combined with the
context of the environment, is used to generate template action
plans in terms of known robot behaviors (pre-programmed low-
level actions such as pick, place, etc.) [8]-[14]. For instance,
Berk Karli et al. 2024 [24] show how approaching robot
programming with an LLM may enable users to provide
minimally constrained text commands. MARCER extends such
systems by enabling interaction via spoken natural language,
rather than typed text, which we believe is a more intuitive and
hands-free approach to robot programming, and embedding
this interaction within a TAP paradigm.

C. AR Programming Feedback

Providing visual feedback to users during programming and
debugging is crucial to enhance user experience and aid in
identifying and resolving issues. In designing MARCER, we
leverage AR to provide this feedback and related contextual
information in situ within a user’s environment. Several
modalities for AR exist, ranging from video overlays on
traditional computer screens [58]-[60], mobile tablet AR [61]-
[64], projector overlays [65]-[67], and augmented reality head
mounted displays (ARHMD) [68]—-[74]. Recent research has
shown that programming tools may utilize AR to improve situa-
tional awareness, system usability, and overall user interactions
(see [27], [46], [75]-[79] for recent surveys of mixed reality
robotics). Therefore, in MARCER we employ an ARHMD to
deliver programming feedback in a hands-free experience.

D. Multimodal Robot Programming Interfaces

Prior research has investigated how to provide users with rich
sensory information regarding robots and their environments by
combining different modalities [80], [81]. For example, prior
work has explored interfaces that combine force sensing with
vision [82], gaze with voice [83], speech with gestures [84],
or natural language text with block-programming [33]. Most
similar to our work is that of Marin et al. 2005 [85], Akan

530
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

Session 5A: Extended Reality (XR)

al

I heard: "Move the food that is
the shelves.

Choose how to pro Building a plan for this command...

This function mov
from

ween the middle shelf and the
The function checks if each item
n picks and places it
all food items are moved, the
is finished.

(a) Initial planning phase (b) Adding a location preference

HRI 2025, March 4-6, 2025, Melbourne, Australia

Rule added. Click or say "Show Rules" to see
your rules.

e

cks up the object and places it in
zone 6. After all eligible objects have been
moved, the function finishes its task.

(c) Approving the new plan (d) Executing the plan

Fig. 2: As depicted in Fig. 1, a user begins with a command such as, “Move the food that is on the table to the shelves.” (a)
MARCER then generates an associated trigger-action rule while highlighting relevant objects and surfaces through AR (orange
wireframes). In this case, (b) the user provides feedback, specifying preferred placement locations using 3D virtual zones within
the workspace (blue rectangles) and verbal feedback (“Actually put the food in zone 6). (c) The updated rule is presented with
visual highlights, and the system awaits the user’s approval or further edits. (d) Upon approval, users can preview actions via
AR digital twins showing the current, future, and final states of relevant objects, and simulated robot movements.

et al. 2011 [86], and Huang et al. 2019 [87] who implement
voice commands and AR to facilitate robot programming. In
contrast to these systems, which rely on 2D AR overlays or
language commands for single action primitives, our system
combines an ARHMD with a LLM to provide 3D spatial input
and feedback. This allows users to freely interact with their
workspace, while building TAP rules through natural language,
enabling users to create programs that address real-world tasks.

III. SYSTEM DESIGN

MARCER affords multimodal user interaction where users
provide input through both natural language (i.e., spoken
commands to specify goals, refine plans, and interact with
the AR menu) and gestures, which are used to define 3D AR
zones relevant to particular robot activities, while also receiving
visual AR feedback. Apart from manipulating the 3D zones,
users may interact with the interface in a hands-free manner
by utilizing verbal input. An example workflow for a direct
command is depicted in Fig. 2, while an example for building
a trigger-action command is depicted as follows:

1) A user creates a trigger zone by saying “spawn zone.” When
an object or user enters this zone, any associated actions
will be executed. Users can create multiple zones, such
as one for indicating where a robot can grab objects and
another for where to place them. In addition to zones, users
can define triggers relevant to locations, time, or both.

2) To generate a TAP rule, the user says the key phrase “Hey
Fetch,” followed by a conditional command such as, “If I
place groceries in zone one, move them to the middle shelf.”
The system then plans a function, comprised of action

primitives, for moving the groceries from zone one to the
middle shelf while highlighting relevant objects, surfaces,
or zones. These highlights help users quickly preview which
elements are involved in the plan.

3) Users can edit their initial command. For instance, if the
user wants the groceries placed in a specific area on the
shelf, they can position a second zone on a subsection of
the shelf and say, “Place them in zone two instead.” This
prompts the system to adjust its plan and highlight the
newly relevant items. Once satisfied, users can approve the
final rule by saying “approve.”

4) When the triggering conditions of a stored rule are met, the
system executes the associated actions. During execution,
visualizations display groceries being placed in zone two,
including relevant highlights, robot trajectories, and current
and future object positions. Users can stop the robot and
redo the process at any time by saying “stop robot,” or
continue to create more rules.

To enable this workflow, our system takes inspiration from prior

work in robot programming tools [20], [22], [24], augmented

reality robotics interfaces [21], [88]-[90] and LLM research

[8]. MARCER is composed of: (1) Visual Interface, (2) Speech

Processor, (3) Rule Generator, (4) Large Language Model,

(5) Rule Monitor, (6) Scene Graph, (7) Object Tracker, (8)

Planning Scene, (9) Action Dispatcher, and (10) Manipulation

Node. Fig. 3 illustrates these components and is detailed below.

A. Visual Interface and Speech Processor

To facilitate multimodal interaction, users can author robot
programs using an AR visual interface (see Fig. 4) and voice

531
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

Session 5A: Extended Reality (XR)

Speech
to text

Composes triggers
and actions
through dialogue

o

Speech
Processor

. I' .
Rule generation . Provide

Display

zones
future robot

Generate

python
TAP rule

collision objects

HRI 2025, March 4-6, 2025, Melbourne, Australia

Add generated

3 . Execute triggered
python rule

Rule actions
Monitor /™ /" Action

Evaluate
unknown
conditions

A

7 Provide

Visual feedback f)bjects objec.t—loca'tion Plan action
Interface). . in the scene A relationships primitive
Add user "2\ Language . -
defined 3D Model Provide an object’s

Manipulation
Node

behavior N—" T Execute trajectory
et . el TN Lt " Provide .
. Upr?a.te object Tt i e —S Main Flow
Tracker positions ~_ TFTTeeeee- > anning collision
Update Scene scene <—> LLM

----> Scene Updates

Fig. 3: After a spoken command, the Speech Processor converts it to text, which is sent to the Rule Generator. The Rule
Generator collaborates with the LLM to create rules, displays feedback via the Visual Interface, and sends approved rules to
the Rule Monitor. The Rule Monitor evaluates each condition, querying the LLM for unknown conditions as needed. The
Scene Graph, updated by the Object Tracker, defines relationships between objects, surfaces, users, and zones, sharing this data
system-wide. The Action Dispatcher works with the Manipulation Node to plan and execute the Rule Monitor’s Action Plan.

commands. The Visual Interface allows users to create, resize,
and move 3D zones that specify when to trigger an action
or where to place objects. By grounding these zones in the
real world, users can specify locations that require depth
information such as shelves or object handover locations
in space, overcoming the limitations of 2D interfaces that
often provide a single top-down view of a workspace. This
approach also enables us to overlay the robot’s digital twin for
visualization of planned motion trajectories. To minimize visual
clutter, labels for surfaces, objects, and zones appear only when
a user’s gaze activates them. Additionally, a menu within the
user’s workspace displays text information to communicate
program states (see Fig. 2). This includes user commands,
rule feedback, a description of the generated TAP rule, and
the current action being planned or executed. Also listed are
active, inactive, and executing rules for user reference and
management. Users can operate the visual interface entirely
through voice commands, freeing the user’s hands for tasks. We
see this as a crucial requirement for scenarios that require robot
assistance, where a user’s hands may already be engaged. For
example, the user may be washing dishes, unloading groceries,
or folding laundry, while desiring the robot to put away cleaned
dishes, grocery items, or folded clothes, analogous to human-
human collaborative work. To navigate the interface, users
can trigger buttons using voice commands mapped to specific
interface menu keywords, such as “spawn zone” for creating
a zone or “stop robot” to stop execution immediately in case
of unexpected robot actions. To send instructions to the robot,
the Speech Processor listens for the wake word, “Hey Fetch,”
sending the subsequent instruction to the Rule Generator.

B. Rule Generator and Large Language Model

The Rule Generator analyzes verbal commands by querying
a LLM in three different stages: Trigger Detector, Function

ot performs an action
30 seconds. If 30 seco: sed,
ks up a bottle. The

Fig. 4: The visual interface can be placed anywhere in AR.
Active rules appear on the left panel, with executing rules
highlighted. Users can also view descriptions of each rule.
Objects and locations are highlighted orange during execution.

Generator, and Description Generator. Each stage uses prompts
constructed from a reference dataset of 54 manually annotated
examples containing a user command, its trigger condition,
relevant environmental context, and a corresponding Python
TAP function (see https://github.com/hri-ironlab/MARCER.git
for the dataset and the Appendix for example prompts). While
the LLM can operate independently, providing a reference
dataset has been found to improve the quality of the generated
output [8], [13].

Trigger Detector: In the first stage, the Trigger Detec-
tor queries the LLM with a prompt containing both the
user’s spoken command and a set of example command-
trigger pairs to identify the intended trigger type. Currently,

532
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

Session 5A: Extended Reality (XR)

MARCER supports four types of triggers, a location trigger
of the kind “If an object/person is in [location], then
[desired_action]” (e.g., “If a dish is on the table, put it
in the sink” or “When I get back, if I enter Zone 1, hand
me food from the shelf”), a timed trigger of the format
“If [desired_time] has passed, [desired_action]”
(e.g., “In 10 minutes, pour me a glass of water” or “In 1 hour,
put the food on the table™), a timed location trigger of the
format “If an object/person has been in [location] for
[desired_time], [desired_action]” (e.g. “When-
ever any object has been in Zone 1 for 5 minutes, move it to the
middle shelf” or “If the glass has been sitting on the table for 30
seconds, pour some water in it”), and a null trigger for handling
immediately executable commands, such as “move the mustard
from the table to the shelf.”” MARCER does require each
command to begin with the keywords “Hey Fetch” followed by
a conditional statement or a direct command. However, rather
than forcing users to adhere to a strict conditional format,
MARCER seeks to match what was said to one of our four
trigger types. This provides users with the freedom to verbally
specify their commands however they like. After inferring the
trigger type, this information is sent to the Function Generator.

Function Generator: The Function Generator queries the
LLM to generate a Python function that represents the user’s
command as a trigger-action rule. By directly producing and
executing Python code at runtime, MARCER eliminates the
need to translate task descriptions into executable code. To
enable this, the query utilizes a prompt constructed with
examples tailored to the specific trigger type from the dataset. In
addition, the Scene Graph (see §1II-E) provides relevant names
and locations of objects and surfaces within the scene. This
information is added to the prompt along with any corrective
feedback the user may have provided to fix prior generated
rules. To evaluate triggers (e.g., “If a dish is on the table, put
it in the sink™ has the trigger “dish is on the table”, or “Put
all food on the table” should execute for all objects of type
“food”) and dynamically changing environments, we designed a
primitive function check_condition that can be included
in the generated function. When executed by the Rule Monitor
(see §III-C), if it returns true, the associated actions are passed
to the Action Dispatcher (see §III-D). In case of an unknown
condition, the function queries the LLM for a truth value.

Description Generator: The Description Generator queries
the LLM to summarize the output Python function in plain
language that non-programmers can understand. Users can then
review this summary and decide if it matches their expectations.
If not, they can provide verbal feedback for recomputing the
plan. MARCER incorporates each round of feedback until the
user is satisfied with the generated function output, which,
once approved, is forwarded to the Rule Monitor.

C. Rule Monitor

MARCER currently supports the If-Then TAP rule paradigm,
with potential for future expansion. An If-Then rule triggers
an action once its If condition is met. For example, “If an
object is in [Zone 1], then [move all objects from Zone 1 to

HRI 2025, March 4-6, 2025, Melbourne, Australia

the shelf]” or “If a dish is on the dish area for [10 minutes],
move it to the bottom shelf”, which MARCER formulates
as “If a dish is on the [dish area] and [10 minutes] have
passed, then [move it to the bottom shelf]”. The Location
Triggers are based on “surfaces,” like tables or shelves in the
environment, and user-defined “zones” that can exist anywhere
in 3D space (for example, a user might create a midair zone for
object handovers). To evaluate location conditionals, the Rule
Monitor queries the Scene Graph to check whether objects
satisfy an “is on” or “is in” relationship. For Timed Triggers,
the Rule Monitor stores a new timestamp when a rule is initially
added to the monitoring list, or when an object moves into
a time-restricted location. During each conditional check, if
the elapsed time with respect to the initial stored timestamp
exceeds the specified threshold in the rule, the Rule Monitor
triggers the associated actions. Users can create, edit, or delete
rules when the robot is ready for commands, during rule setup,
or while providing verbal feedback.

D. Action Dispatcher

When a rule trigger evaluates to true, the Action Dispatcher
executes its associated actions by coordinating with the Ma-
nipulation Node (§III-F). This includes managing the planning
and execution of actions or activating fallback measures when
necessary. For example, if execution fails because sensed joint
positions deviate from the motion plan’s tolerance, the system
replans from the current robot state and retries the action. The
Action Dispatcher continues to broadcast state updates and
feedback, enabling other components to monitor the progress
of manipulation tasks. Once all actions for a TAP rule succeed,
the next triggered rule can be executed.

E. Scene Graph and Object Tracker

The Scene Graph and Object Tracker are used to compute
the positions and relationships of objects, surfaces, and zones
in the scene. These object poses, along with zone poses and
dimensions from the visual interface, are fed into the Scene
Graph. Scene graphs are commonly utilized in robotics for
creating a shared 3D world model to be queried by different
components in a robotic system. Our Scene Graph component
currently consists of nodes representing objects, zones, and
surfaces, each storing attributes such as position, orientation,
and size. After each update loop, the Scene Graph computes
its edges, representing relationships between nodes. Currently
supported are the “is on” relationships between an object and
a surface and the “is in” relationships between an object and
a zone. This relationship is utilized by the Rule Generator for
building TAP rules relevant to the scene, Rule Monitor for
checking conditions, and the Manipulation Node to calculate
allowable surface collisions during pick-and-place operations.

F. Manipulation Node and Planning Scene

MARCER creates functions composed of known primitive
actions that, when combined, can accomplish a variety of
household tasks. Currently, MARCER supports six primitive
actions: pick, place, pour, wipe surface, wave, and dance. To

533
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

Session 5A: Extended Reality (XR)

execute these actions, the Action Dispatcher sends the current
action to the Manipulation Node, which then coordinates with
the Planning Scene. Upon receiving a manipulation plan request,
the Planning Scene takes a snapshot of the world objects,
surfaces, and robot pose by querying the Scene Graph. From
this snapshot, the Manipulation Node computes a collision-free
motion plan, which is displayed via the Visual Interface. The
robot executes the plan through its joint controller.

IV. SYSTEM IMPLEMENTATION

Robot Platform and Object Tracking: MARCER currently
works with the Fetch robot, a 7 degree-of-freedom mobile
manipulator [32]. Within the Manipulation Node, MARCER
utilizes the Movelt! Task Constructor (MTC) to plan and
execute manipulation actions [91]. MARCER’s motion planning
time averaged 7.62 seconds/plan (SD = 1.50 sec.). One benefit
to MTC, is its compatibility with over 150 robot platforms
using Movelt! Thus, MARCER can be adapted to other robots
by swapping the Movelt! configuration profiles provided by
other platforms. To track objects within the scene, we use a
Vicon motion capture system as robust perception was not the
focus on this work; future systems could leverage the robot
and ARHMD sensors to replace external tracking. By placing
reflective markers on the robot and scene objects, we can track
the position and orientation of objects in the scene relative to
the robot. This information is passed to the Scene Graph to be
read by other components. Currently, our setup (depicted in
Fig. 5a), includes four surfaces, the middle shelf, bottom shelf,
dish area, and table and a combination of common household
items including food, drinkware, and a sponge.

AR Interface: For our visual interface, we use the Microsoft
HoloLens 2 ARHMD. We use the Unity game engine and the
Mixed Reality Toolkit to build and stream holograms to the
ARHMD [92]. To align the holograms and the real world in
the AR camera space, we follow a two-step process. First,
we match the origin of a fiducial marker tracked by the AR
headset [93] with a corresponding point in the Vicon tracking
space. Then, the positions of the tracked objects and the robot
are transformed into the fiducial marker’s coordinate system,
aligning their virtual representations in the HoloLens. With
this approach, we are also able to translate the position and
orientation of virtual zones to the real world.

Speech Processing and Large Language Model: To
enable natural language input, our speech processor utilizes
the Windows Keyword Recognition Subsystem, PyAudio, and
the Whisper speech recognition model [94]. To navigate the
AR interface, users can trigger buttons using voice commands
mapped to specific keywords. To recognize commands to send
to the Rule Generator, the Speech Processor listens for the key
phrase, “Hey Fetch.” Once recognized, the instruction following
the key phrase is sent to the Rule Generator. We implement our
Large Language Model using the GPT-40 [57], [95] model
offered by the OpenAl API [96].

Hardware and Communication: Our system operates on
two desktops equipped with an NVIDIA RTX 3080 GPU. One
of the machines has a Windows 11 operating system, and runs

HRI 2025, March 4-6, 2025, Melbourne, Australia

the Vicon tracking software and our Unity application. Vicon
tracking data is transmitted to the second desktop via a Python
socket. The second desktop has a Ubuntu 20.04 operating
system, and hosts the back-end of our programming system
on Robot Operating System (ROS), a framework designed
for developing robot software. The ROS TCP Endpoint and
Connector [97] connect Unity to ROS, enabling accurate
visualizations of the robot and object states.

V. SYSTEM EVALUATION

We conducted an IRB-approved study to explore how users
interact with MARCER. Participants completed three robot-
assisted tasks modeled after everyday scenarios: (1) Kitchen
Cleanup, (2) Item Storing, and (3) Object Handover. These
tasks involve defining object placements, triggers for actions,
and creating combinations of actions, and as such we believe
MARCER may also apply to more specialized tasks such as
object assembly [21], [22], [98] or chemistry experiments [24],
which require similar specifications.

Task 1. Kitchen Cleanup: (20 minute cap) Participants
programmed the robot to clean the kitchen area (see Fig. 5b).
To be considered clean, objects needed to remain in the dish
area for 15 seconds (mimicking being rinsed), then be placed
on the bottom shelf. Users were told to build a repetitive rule
for this task to handle multiple dishes. Next, users programmed
the robot to clean the bottle, pour the contents of the glass
into the cup, and have the robot clean the glass. After the user
moved the cup to the side table and the main table was empty,
the robot needed to wipe the main table with the sponge.
Task 2. Item Storing: (20 minute cap) Participants pro-
grammed the robot to move the objects from the table to
the shelves. While the glass and cup could be placed anywhere
on the bottom shelf, participants needed to define a food storage
area by placing a zone in the outlined space on the middle
shelf. See Fig. 5c for the initial setup of the scene.

Task 3. Object Handover: (10 minute cap) Participants
programmed the robot to trigger a handover when an object
was held in a particular zone in 3D space. Once programmed,
the user held the object in the zone to complete the handover.

A. Procedure

Participants first read and signed a consent form. An
examiner then guided them through a 30 minute training
script, which included creating a direct command, a one-time
rule that executed and deleted itself, and a repetitive rule that
continued to check for execution. The examiner explained the
visualizations, how to provide verbal feedback, how to delete
rules, and how to view active rules and their descriptions,
answering any questions along the way. After successfully
completing the tutorials, participants read over the first task,
Kitchen Cleanup, while the experimenters set up the scene.
The task began when participants made their first interaction
with the interface. Once the task was completed or time ran
out, the task was ended. This procedure was repeated for
Task 2 and Task 3. After Task 3, participants completed a
survey that included the System Usability Scale (SUS) [99],

534
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

Session 5A: Extended Reality (XR)

Scene Objects

(a) Workspace (b) Task 1: Kitchen Cleanup

HRI 2025, March 4-6, 2025, Melbourne, Australia

(c) Task 2: Item Storing (d) Task 3: Object Handover

Fig. 5: The robot can move (a) the Scene Objects between the “Middle Shelf”, “Bottom Shelf”, “Dish Area”, and “Table.” In
Task 1 (b), users programmed the robot to clean the dishes by moving them to the “Dish Area” for 15 seconds, placing them
on the bottom shelf, and wiping the table. In Task 2 (c), users defined a virtual zone on the left side of the “Middle Shelf” and
instructed the robot to move food to that zone and place a glass and cup anywhere on the bottom shelf. In Task 3 (d), users
placed a virtual zone in 3D space for triggering a handover, prompting the robot to grab the object from the user’s hand.

demographic information, and subjective feedback, followed
by a semi-structured interview. The training script, task sheets,
survey, and interview guide are included in our git repository.

B. Measures

We collected a series of measurements to characterize our
system using data collected from participants. These include
task completion time, total time spent programming, the number
of times users created a one-time command or repetitive rule,
gave verbal feedback, or rejected rules, and types of errors
encountered. We categorized the errors into five types: T:
Vicon tracking error, R: Robot manipulation error, L: LLM
logic error/hallucination, H: Headset error, and M: Microphone
error. Please see the Appendix for more details.

C. Participants

For this study we recruited 15 participants (9 male, 6 female)
with ages ranging from 18-50 (M = 25.6, SD = 7.67). Thirteen
(86.6%) participants reported having three or more years
of programming experience and eight (53.3%) participants
reported owning an IoT device. On a single item 1-7 scale (7
= most familiar), participants reported their average familiarity
with robotics as 3.2 (SD = 2.11), VR/AR technologies as 4.1
(SD = 1.81), and TAP as 5.8 (SD = 1.42).

D. Findings

Table I summarizes the objective data from our system
evaluation. Ten (66.67%) participants completed all three tasks,
while two (13.33%) did not finish the first task, and three (20%)
did not finish the second within the time limits. The two who
failed Task 1 commanded the robot to clean the glass with a
sponge instead of following the instructions of leaving it in the
dish area for 15 seconds. Although valid in the real world, this
method exceeded the robot’s capabilities, preventing it from
planning and executing the action. In Task 2, two participants
placed an object on the table in a position the robot could
not reach, leading it to continuously fail to plan a trajectory
to pick it up. The third participant created a rule that moved
all food objects, even those already on the shelf, to the food
storage area. This left no space for the final object, and the
participant did not debug the issue in time.

The participants’ programming time for all tasks (M = 5:36,
SD = 4:07) including the LLM plan generation time (M = 4.69
sec./query, SD = 2.41 sec.) contributed to just 27% of the total
experiment time (M = 20:37, SD = 8:21). Surveys showed that
users found creating conditional rules straightforward, with
both location-based triggers (M = 6.4, SD = 1.30) and time-
based triggers (M = 6.4, SD = 0.91) rated to be easy to create.
Users often opted to set rules using the triggers, as pointed out
by P11: “The autonomous repetitive task feature made it very
easy. For the second scenario it was quite easy to automate
the entire process without needing to re-command” and P14:
“Having repeated rules made it easier so I did not have to
say multiple commands”. When asked about the rule editing
mechanism, P15 noted that “[giving feedback] definitely helped
a lot when the task given in the first place was wrong and it
made changing statements easier. It also saved time in a way.”
Along the same lines, P9 mentioned that “The feedback system
helped a lot because I made a lot of mistakes and I wanted to
edit things.”

Users also agreed that the interaction with the robot was
fluent M = 5.13, SD = 1.73) and became more fluent over
time (M = 6.07, SD = 1.10), as noted by P6: “Ar first I felt
adversarial to the robot, but by the end we were a team.” User
comments such as P4: “seeing what the robot was gonna
do before it actually performed the action made the whole
thing really friendly,” P1: “I think like I didn’t really struggle
with making the rules because I just said it how I thought I
would naturally say it in general, and the response it gave
me was pretty intuitive and matched what I was looking for,”
and P8: “Having the robot explain the thought process and
actions it was going to take before actually taking them [made
it easier]” point to MARCER’s integration of the AR previews,
unconstrained speech commands, and natural language plan
description being particularly useful. The system received a
SUS score of 70.83 (SD = 16.39), indicating “above average”
usability [100].

VI. DISCUSSION

MARCER demonstrates the design and development of
a state-of-the-art robot programming interface that provides

535
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

Session 5A: Extended Reality (XR)

HRI 2025, March 4-6, 2025, Melbourne, Australia

TABLE I: Metrics obtained include task completion time and whether they did not finish (DNF) in the allotted time, total time
spent programming, number of rules created for the task, number of times feedback was provided, number of times a rule was
rejected, and the System Usability Score. Errors encountered include T: Vicon Tracking error, R: Robot manipulation error, L:
LLM logic error/hallucination, H: Headset error, and M: Microphone error (see the Appendix for more details).

Task 1: Kitchen Cleanup

Task 2: Item Storage

Task 3: Object Handover

Total Prog. # # # Total Prog. # # # Total Prog. # # #
PID Time Time Rules Feed. Rej. Time Time Rules Feed. Rej. Time Time Rules Feed. Rej. Errors SUS
P1 7:58 1:22 3 0 0 9:05 2:48 2 1 0 2:51 0:16 1 0 0 T,R,L 725
P2 11:27 2:51 5 0 0 14:52 4:25 2 3 0 2:33 0:26 1 0 0 - 70
P3 9:34 141 4 0 0 DNF 2:47 8 0 0 1:55 0:17 1 0 0 T,L 875
P4 9:50 1:34 4 0 0 8:44 0:50 2 0 0 2:22 0:22 1 0 0 H 70
P5 8:37 1:59 3 0 0 DNF 5:05 2 2 3 5:02 2:33 1 0 2 T,L,R 40
P6 9:47 0:57 3 1 0 6:46 0:43 4 0 0 1:54 0:14 1 0 0 - 82.5
P7 15:43 5:20 4 0 0 15:45 2:49 4 0 2 4:14 2:06 1 1 1 T,L 80
P8 9:57 2:05 4 3 1 9:41 0:37 2 0 0 2:13 0:13 1 0 0 - 92.5
P9 7:44 2:01 3 0 0 DNF 4:19 8 0 4 3:01 0:39 1 0 1 L,LR 675
P10 DNF 7:55 8 1 0 9:24 1:01 3 0 0 2:33 0:44 1 1 0 LLR 35
P11 10:35 1:51 4 2 0 10:27 0:36 2 0 0 2:15 0:15 1 0 0 - 70
P12 10:34 1:00 4 0 0 18:26 2:08 5 0 0 2:35 0:23 1 0 0 L,LR 60
P13 836 1:32 4 0 0 13:42 2:32 5 0 1 2:54 0:20 1 0 0 L,LR 675
P14 8:17 1:07 4 0 0 9:49 0:52 2 0 0 2:18 0:20 1 0 0 H 77.5
P15 DNF 3:56 7 1 0 11:56 3:11 5 1 0 3:20 0:29 1 0 0 LM 9
MEAN 9:54 2:29 427 053 0.07 11:33 2:19 373 047 0.67 2:48 0:38 1 0.13 0.27 70.83

cohesive, multimodal user interaction. From participant in-
teractions, one striking observation was the diverse ways in
which participants approached their programming tasks. Users
were able to verbally direct the robot in flexible, natural ways,
without being forced to adhere to the strict formatting and
syntax required by traditional programming systems. These
commands ranged from statements like P8, “The user will hand
you a can of pringles in zone 1, then move it to the lower shelf,”
to P10 “Once an object is in dish area for 15 seconds move
it to the bottom shelf” and P11, “If you see an object on the
table move it to zone 1.” Our evaluation found that participants
were generally effective using MARCER to complete the three
tasks. Across all trials, only two (4.44%) tasks were failed
due to invalid LLM generated plans that participants could not
recover from. However, we observed that MARCER fell short
in communicating system failures effectively. Therefore, future
systems should not only communicate their capabilities, but also
why specific actions fail. Still, MARCER’s high success rate
provides strong support for the power of combining the simple
and intuitive structure of TAP with the translation capabilities
of LLMs, and we argue that future systems should empower
users to communicate programs their own way.

A. Limitations and Future Work

World State Estimation: One limitation of MARCER is its
reliance on a Vicon motion capture system for object tracking.
One way to address this is to integrate a perception pipeline
that combines data from the robot and ARHMD sensors
to continuously estimate a model of the real world while
incorporating advanced Vision-Language Models (VLMs).

TAP Expressions: Further extensions might also utilize
more of the expressive power of TAP for robotics. For
example, Huang and Cakmak [101], highlight nine trigger-
action programming pairs that match a user’s mental model.
These pairs, such as While-Do, As-Long-As-Do, and If-When-
Then, could extend our set and improve user interaction.

Finally, future work can conduct further evaluations, in-
cluding against other robot programming systems and with
larger and more representative samples of novice users to better
understand trade-offs and produce more generalizable results.

VII. CONCLUSION

This paper introduces MARCER, a multimodal system for
composing and refining robot trigger-action rules for everyday
tasks. MARCER integrates natural language processing with
an Augmented Reality Head-Mounted Display (ARHMD) to
provide hands-free interaction and visual feedback within the
context of robot activities. We demonstrate how MARCER
enables users to set up various home-assistance tasks and
characterize performance in a system evaluation. By combining
the expressive power of trigger-action programming, natural
language verbal input, and augmented reality visual feedback,
we pave the way for seamless integration of general-purpose
robot assistants in the home.

VIII. ACKNOWLEDGMENTS

This work was supported by NSF Award #2222953.

536
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

Session 5A: Extended Reality (XR)

(1]

[2]

(3]

[4]

[3]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Abderraouf Maoudj Abdelfetah Hentout, Mustapha Aouache and Isma
Akli. Human-robot interaction in industrial collaborative robotics: a
literature review of the decade 2008-2017. Advanced Robotics, 33(15-
16):764-799, 2019.

Eloise Matheson, Riccardo Minto, Emanuele G. G. Zampieri, Maurizio
Faccio, and Giulio Rosati. Human-robot collaboration in manufacturing
applications: A review. Robotics, 8(4), 2019.

S. Robla-Gémez, Victor M. Becerra, J. R. Llata, E. Gonzalez-Sarabia,
C. Torre-Ferrero, and J. Pérez-Oria. Working together: A review on safe
human-robot collaboration in industrial environments. /[EEE Access,
5:26754-26773, 2017.

M. Scopelliti, M. V. Giuliani, A. M. D’Amico, and F. Fornara. If i
had a robot at home... peoples’ representation of domestic robots. In
Simeon Keates, John Clarkson, Patrick Langdon, and Peter Robinson,
editors, Designing a More Inclusive World, pages 257-266, London,
2004. Springer London.

Joe Saunders, Dag Sverre Syrdal, Kheng Lee Koay, Nathan Burke, and
Kerstin Dautenhahn. “teach me—show me”—end-user personalization
of a smart home and companion robot. I[EEE Transactions on Human-
Machine Systems, 46(1):27-40, 2016.

Garrett Wilson, Christopher Pereyda, Nisha Raghunath, Gabriel de la
Cruz, Shivam Goel, Sepehr Nesaei, Bryan Minor, Maureen Schmitter-
Edgecombe, Matthew E. Taylor, and Diane J. Cook. Robot-enabled
support of daily activities in smart home environments. Cognitive
Systems Research, 54:258-272, 2019.

Abhinav Gupta, Adithyavairavan Murali, Dhiraj Prakashchand Gandhi,
and Lerrel Pinto. Robot learning in homes: Improving generalization
and reducing dataset bias. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

Maitrey Gramopadhye and Daniel Szafir. Generating executable action
plans with environmentally-aware language models. in 2023 ieee. In
RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3568-3575.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar
Cortes, Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakr-
ishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding
language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.
Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha
Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan
Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet,
Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman,
Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete
Florence. PalLM-e: An embodied multimodal language model. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 8469-8488. PMLR,
23-29 Jul 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar,
Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman,
Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for real-
world control at scale. arXiv preprint arXiv:2212.06817, 2022.
Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar,
Xi Chen, Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava
Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action models transfer
web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch.
Language models as zero-shot planners: Extracting actionable knowl-
edge for embodied agents. In International Conference on Machine
Learning, pages 9118-9147. PMLR, 2022.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei
Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason, and Animesh
Garg. Progprompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 11523-11530. IEEE, 2023.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen
Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, et al. A
survey on large language model based autonomous agents. Frontiers of
Computer Science, 18(6):1-26, 2024.

537

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[33]

HRI 2025, March 4-6, 2025, Melbourne, Australia

Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia
Deng, Vladlen Koltun, Sergey Levine, Jitendra Malik, Igor Mordatch,
Roozbeh Mottaghi, et al. Rearrangement: A challenge for embodied ai.
arXiv preprint arXiv:2011.01975, 2020.

David Porfirio, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu.
Authoring and verifying human-robot interactions. In Proceedings
of the 31st Annual ACM Symposium on User Interface Software
and Technology, UIST ’18, page 75-86, New York, NY, USA, 2018.
Association for Computing Machinery.

Enrique Coronado, Fulvio Mastrogiovanni, Bipin Indurkhya, and
Gentiane Venture. Visual programming environments for end-user
development of intelligent and social robots, a systematic review.
Journal of Computer Languages, 58:100970, 2020.

Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L
Littman. Practical trigger-action programming in the smart home. In
Proceedings of the SIGCHI conference on human factors in computing
systems, pages 803-812, 2014.

Nicola Leonardi, Marco Manca, Fabio Paterno, and Carmen Santoro.
Trigger-action programming for personalising humanoid robot behaviour.
In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, page 1-13, New York, NY, USA, 2019.
Association for Computing Machinery.

Bryce Ikeda and Daniel Szafir. Programar: Augmented reality end-user
robot programming. J. Hum.-Robot Interact., 13(1), mar 2024.
Emmanuel Senft, Michael Hagenow, Robert Radwin, Michael Zinn,
Michael Gleicher, and Bilge Mutlu. Situated live programming for
human-robot collaboration. In The 34th Annual ACM Symposium on
User Interface Software and Technology, pages 613-625, 2021.
Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang
Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise
and potential of large language model based agents: A survey. arXiv
preprint arXiv:2309.07864, 2023.

Ulas Berk Karli, Juo-Tung Chen, Victor Nikhil Antony, and Chien-
Ming Huang. Alchemist: LIm-aided end-user development of robot
applications. In Proceedings of the 2024 ACM/IEEE International
Conference on Human-Robot Interaction, pages 361-370, 2024.

Peter Pirolli and Stuart Card. The sensemaking process and leverage
points for analyst technology as identified through cognitive task
analysis. In Proceedings of international conference on intelligence
analysis, volume 5, pages 2—4. McLean, VA, USA, 2005.

Bryce Ikeda and Daniel Szafir. Advancing the design of visual debugging
tools for roboticists. In Proceedings of the 2022 ACM/IEEE International
Conference on Human-Robot Interaction, HRI *22, page 195-204. IEEE
Press, 2022.

Michael Walker, Thao Phung, Tathagata Chakraborti, Tom Williams,
and Daniel Szafir. Virtual, augmented, and mixed reality for human-
robot interaction: A survey and virtual design element taxonomy. ACM
Transactions on Human-Robot Interaction, 12(4):1-39, 2023.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macln-
tyre. Recent advances in augmented reality. /[EEE Computer Graphics
and Applications, 21(6):34-47, 2001.

Hooman Hedayati, Michael Walker, and Daniel Szafir. Improving
collocated robot teleoperation with augmented reality. In Proceedings
of the 2018 ACM/IEEE International Conference on Human-Robot
Interaction, HRI 18, page 78-86, New York, NY, USA, 2018.
Association for Computing Machinery.

John P Mclntire, Paul R Havig, and Eric E Geiselman. What is 3d
good for? a review of human performance on stereoscopic 3d displays.
In Head-and Helmet-Mounted Displays XVII; and Display Technologies
and Applications for Defense, Security, and Avionics VI, volume 8383,
page 83830X. International Society for Optics and Photonics, 2012.
Eric Rosen, David Whitney, Elizabeth Phillips, Gary Chien, James
Tompkin, George Konidaris, and Stefanie Tellex. Communicating
robot arm motion intent through mixed reality head-mounted displays.
In Nancy M. Amato, Greg Hager, Shawna Thomas, and Miguel
Torres-Torriti, editors, Robotics Research, pages 301-316, Cham, 2020.
Springer International Publishing.

Melonee Wise, Michael Ferguson, Derek King, Eric Diehr, and David
Dymesich. Fetch and freight: Standard platforms for service robot
applications. In Workshop on autonomous mobile service robots, pages
1-6, 2016.

Sara Beschi, Daniela Fogli, and Fabio Tampalini. Capirci: a multi-modal
system for collaborative robot programming. In End-User Development:
7th International Symposium, IS-EUD 2019, Hatfield, UK, July 10-12,
2019, Proceedings 7, pages 51-66. Springer, 2019.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

Session 5A: Extended Reality (XR)

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

Justin Huang and Maya Cakmak. Code3: A system for end-to-end
programming of mobile manipulator robots for novices and experts.
In Proceedings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, pages 453-462, 2017.

Justin Huang, Tessa Lau, and Maya Cakmak. Design and evaluation of a
rapid programming system for service robots. In 2016 11th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages
295-302. IEEE, 2016.

David Porfirio, Mark Roberts, and Laura M. Hiatt. Goal-oriented end-
user programming of robots. In Proceedings of the 2024 ACM/IEEE
International Conference on Human-Robot Interaction, HRI *24, page
582-591, New York, NY, USA, 2024. Association for Computing
Machinery.

Kelleher R Guerin, Colin Lea, Chris Paxton, and Gregory D Hager. A
framework for end-user instruction of a robot assistant for manufacturing.
In 2015 IEEE international conference on robotics and automation
(ICRA), pages 6167-6174. IEEE, 2015.

Chris Paxton, Felix Jonathan, Andrew Hundt, Bilge Mutlu, and
Gregory D Hager. Evaluating methods for end-user creation of robot
task plans. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 6086—-6092. IEEE, 2018.

Emilia I Barakova, Jan CC Gillesen, Bibi EBM Huskens, and Tino
Lourens. End-user programming architecture facilitates the uptake of
robots in social therapies. Robotics and Autonomous Systems, 61(7):704—
713, 2013.

Floris Erich, Masakazu Hirokawa, and Kenji Suzuki. A visual
environment for reactive robot programming of macro-level behaviors.
In Social Robotics: 9th International Conference, ICSR 2017, Tsukuba,
Japan, November 22-24, 2017, Proceedings 9, pages 577-586. Springer,
2017.

Manuel Garcia-Herranz, Pablo A. Haya, and Xavier Alaman. Towards
a ubiquitous end-user programming system for smart spaces. J. Univers.
Comput. Sci., 16:1633-1649, 2010.

Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. icap:
Interactive prototyping of context-aware applications. In Kenneth P.
Fishkin, Bernt Schiele, Paddy Nixon, and Aaron Quigley, editors, Per-
vasive Computing, pages 254-271, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

Yngve Dahl and Reidar-Martin Svendsen. End-user composition
interfaces for smart environments: A preliminary study of usability
factors. In Aaron Marcus, editor, Design, User Experience, and Usability.
Theory, Methods, Tools and Practice, pages 118—127, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber, and Florian
Schaub. Exploring end user programming needs in home automation.
ACM Trans. Comput.-Hum. Interact., 24(2), apr 2017.

Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Yuanzhi Cao, and
Karthik Ramani. Gesturar: An authoring system for creating freehand
interactive augmented reality applications. In The 34th Annual ACM
Symposium on User Interface Software and Technology, UIST ’21,
page 552-567, New York, NY, USA, 2021. Association for Computing
Machinery.

Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Ke Huo, Yuanzhi
Cao, and Karthik Ramani. Capturar: An augmented reality tool for
authoring human-involved context-aware applications. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and
Technology, pages 328-341, 2020.

Joe Davison, Joshua Feldman, and Alexander Rush. Commonsense
knowledge mining from pretrained models. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1173-1178, Hong Kong, China, November
2019. Association for Computational Linguistics.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. How
can we know what language models know? CoRR, abs/1911.12543,
2019.

Fabio Petroni, Tim Rocktéschel, Patrick Lewis, Anton Bakhtin, Yuxiang
Wu, Alexander H. Miller, and Sebastian Riedel. Language Models as
Knowledge Bases? ArXiv, abs/1909.01066, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901,
2020.

538

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

HRI 2025, March 4-6, 2025, Melbourne, Australia

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In NAACL, 2019.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language Models are Unsupervised Multitask Learners.
2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al.
Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1-67, 2020.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. Implicit Representa-
tions of Meaning in Neural Language Models. In ACL, 2021.

Adam Roberts, Colin Raffel, and Noam M. Shazeer. How Much
Knowledge Can You Pack into the Parameters of a Language Model?
ArXiv, abs/2002.08910, 2020.

Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of
the usages of deep learning for natural language processing. [EEE
transactions on neural networks and learning systems, 32(2):604-624,
2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 1877-1901.
Curran Associates, Inc., 2020.

Alexandros Rotsidis, Andreas Theodorou, Joanna J Bryson, and
Robert H Wortham. Improving robot transparency: An investigation with
mobile augmented reality. In 2019 28th IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN), pages
1-8. IEEE, 2019.

Sunao Hashimoto, Akihiko Ishida, Masahiko Inami, and Takeo Igarashi.
Touchme: An augmented reality based remote robot manipulation. In
The 21st International Conference on Artificial Reality and Telexistence,
Proceedings of ICAT2011, volume 2, 2011.

Hyoungnyoun Kim, Jun-Sik Kim, Kwanghyun Ryu, Seyoung Cheon,
Yonghwan Oh, and Ji-Hyung Park. Task-oriented teleoperation through
natural 3d user interaction. In 2014 11th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI), pages 335-338.
IEEE, 2014.

E Schmidt, S Schweizer, and D Hendrich. Augmented reality robot
operation interface with google tango, 2018.

Linfeng Chen, Akiyuki Ebi, Kazuki Takashima, Kazuyuki Fujita, and
Yoshifumi Kitamura. Pinpointfly: An egocentric position-pointing
drone interface using mobile ar. In SIGGRAPH Asia 2019 Emerging
Technologies, pages 34-35. 2019.

Jared Alan Frank, Sai Prasanth Krishnamoorthy, and Vikram Kapila.
Toward mobile mixed-reality interaction with multi-robot systems. IEEE
Robotics and Automation Letters, 2(4):1901-1908, 2017.

Jens Lambrecht and Jorg Kriiger. Spatial programming for industrial
robots based on gestures and augmented reality. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
466-472. IEEE, 2012.

Seungho Chae, Hyocheol Ro, Yoonsik Yang, and Tack-Don Han. A
pervasive assistive robot system including projection-camera technology
for older adults. In Companion of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, pages 83-84, 2018.
Ramsundar Kalpagam Ganesan, Yash K Rathore, Heather M Ross, and
Heni Ben Amor. Better teaming through visual cues: how projecting
imagery in a workspace can improve human-robot collaboration. /EEE
Robotics & Automation Magazine, 25(2):59-71, 2018.

Fabrizio Lamberti, Davide Calandra, Federica Bazzano, Filippo G
Prattico, and Davide M Destefanis. Robotquest: A robotic game based
on projected mixed reality and proximity interaction. In 2018 IEEE
Games, Entertainment, Media Conference (GEM), pages 1-9. IEEE,
2018.

Nhan Tran, Trevor Grant, Thao Phung, Leanne Hirshfield, Christopher
Wickens, and Tom Williams. Get this!? mixed reality improves robot
communication regardless of mental workload. In Companion of the
2021 ACM/IEEE International Conference on Human-Robot Interaction,
pages 412-416, 2021.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

Session 5A: Extended Reality (XR)

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Stephanie Arevalo Arboleda, Franziska Riicker, Tim Dierks, and Jens
Gerken. Assisting manipulation and grasping in robot teleoperation
with augmented reality visual cues. In Proceedings of the 2021 CHI
conference on human factors in computing systems, pages 1-14, 2021.
Yi-Shivan Tung, Matthew B. Luebbers, Alessandro Roncone, and
Bradley Hayes. Workspace optimization techniques to improve
prediction of human motion during human-robot collaboration. In
Proceedings of the 2024 ACM/IEEE International Conference on Human-
Robot Interaction, HRI *24. ACM, March 2024.

Michael Walker, Hooman Hedayati, Jennifer Lee, and Daniel Szafir.
Communicating robot motion intent with augmented reality. In
Proceedings of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction, HRI ’18, page 316-324, New York, NY, USA, 2018.
Association for Computing Machinery.

Michael E. Walker, Hooman Hedayati, and Daniel Szafir. Robot
teleoperation with augmented reality virtual surrogates. In 2019 14th
ACM/IEEE International Conference on Human-Robot Interaction (HRI),
pages 202-210, 2019.

Eric Rosen, Nishanth Kumar, Nakul Gopalan, Daniel Ullman, George
Konidaris, and Stefanie Tellex. Building plannable representations with
mixed reality. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 11146-11153. IEEE, 2020.
Yuanzhi Cao, Tianyi Wang, Xun Qian, Pawan S Rao, Manav Wadhawan,
Ke Huo, and Karthik Ramani. Ghostar: A time-space editor for
embodied authoring of human-robot collaborative task with augmented
reality. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology, pages 521-534, 2019.

Zhanat Makhataeva and Huseyin Atakan Varol. Augmented reality for
robotics: A review. Robotics, 9(2):21, 2020.

Daniel Szafir. Mediating human-robot interactions with virtual,
augmented, and mixed reality. In International Conference on Human-
Computer Interaction, pages 124—149. Springer, 2019.

Ryo Suzuki, Adnan Karim, Tian Xia, Hooman Hedayati, and Nicolai
Marquardt. Augmented reality and robotics: A survey and taxonomy
for ar-enhanced human-robot interaction and robotic interfaces. In
CHI Conference on Human Factors in Computing Systems, pages 1-33,
2022.

Gopika Ajaykumar, Maureen Steele, and Chien-Ming Huang. A survey
on end-user robot programming. ACM Comput. Surv., 54(8), oct 2021.
Yuanzhi Cao, Tianyi Wang, Xun Qian, Pawan S. Rao, Manav Wadhawan,
Ke Huo, and Karthik Ramani. Ghostar: A time-space editor for
embodied authoring of human-robot collaborative task with augmented
reality. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology, UIST °19, page 521-534, New
York, NY, USA, 2019. Association for Computing Machinery.
Philipp Mittendorfer, Eiichi Yoshida, and Gordon Cheng. Realizing
whole-body tactile interactions with a self-organizing, multi-modal
artificial skin on a humanoid robot. Advanced Robotics, 29:51 — 67,
2015.

Luka Peternel, Nikolaos G. Tsagarakis, and Arash Ajoudani. Towards
multi-modal intention interfaces for human-robot co-manipulation. 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2663-2669, 2016.

Matteo Fumagalli, Serena Ivaldi, Marco Randazzo, Lorenzo Natale,
Giorgio Metta, Giulio Sandini, and Francesco Nori. Force feedback
exploiting tactile and proximal force/torque sensing. Autonomous Robots,
33:381 — 398, 2012.

Serena Ivaldi, Sébastien Lefort, Jan Peters, Mohamed Chetouani, Joélle
Provasi, and Elisabetta Zibetti. Towards engagement models that

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]
[93]
[94]

[95]
[96]

[97]

[98]

[99]
[100]

[101]

539
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on July 29,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.

HRI 2025, March 4-6, 2025, Melbourne, Australia

consider individual factors in hri: On the relation of extroversion
and negative attitude towards robots to gaze and speech during a
human-robot assembly task. International Journal of Social Robotics,
9:63-86, 2015.

Soshi Iba, Christiaan JJ Paredis, and Pradeep K Khosla. Interactive
multimodal robot programming. The international journal of robotics
research, 24(1):83-104, 2005.

Rail Marin, Pedro J Sanz, Patricio Nebot, and Raul Wirz. A multimodal
interface to control a robot arm via the web: a case study on remote
programming. IEEE Transactions on Industrial Electronics, 52(6):1506—
1520, 2005.

Batu Akan, Afshin Ameri, Baran Ciiriiklii, and Lars Asplund. Intuitive
industrial robot programming through incremental multimodal language
and augmented reality. In 2011 IEEE International Conference on

Robotics and Automation, pages 3934-3939. IEEE, 2011.
Baichuan Huang, Deniz Bayazit, Daniel Ullman, Nakul Gopalan, and

Stefanie Tellex. Flight, camera, action! using natural language and
mixed reality to control a drone. In 2019 International conference on
robotics and automation (ICRA), pages 6949-6956. IEEE, 2019.
Connor Brooks and Daniel Szafir. Visualization of intended assistance
for acceptance of shared control. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 11425—
11430, 2020.

Eric Rosen, David Whitney, Elizabeth Phillips, Gary Chien, James
Tompkin, George Konidaris, and Stefanie Tellex. Communicating Robot
Arm Motion Intent Through Mixed Reality Head-Mounted Displays,
pages 301-316. 01 2020.

Michael Walker, Hooman Hedayati, Jennifer Lee, and Daniel Szafir.
Communicating robot motion intent with augmented reality. In
Proceedings of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction, pages 316-324, 2018.

Michael Gorner, Robert Haschke, Helge Ritter, and Jianwei Zhang.
Moveit! task constructor for task-level motion planning. In 2019
International Conference on Robotics and Automation (ICRA), pages
190-196, 2019.

MixedRealityToolkit. Mixedrealitytoolkit-unity, 2023.

microsoft. Mixedreality-qrcode-sample, 2021.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale
weak supervision. In International Conference on Machine Learning,
pages 28492-28518. PMLR, 2023.

OpenAl Hello GPT-40. 2024.

Greg Brockman, Peter Welinder, Mira Murati, and OpenAl. Openai:
Openai api. 2020.

Laurie Cheers, Devin M., Amanda, Hamid Younesy, Shuo Diao, Peter
Smith, Stephan Hasler, and Tiffany Yau. ROS TCP Endpoint. https:
/Igithub.com/Unity- Technologies/ROS-TCP-Endpoint.

Eloise Matheson, Riccardo Minto, Emanuele GG Zampieri, Maurizio
Faccio, and Giulio Rosati. Human-robot collaboration in manufacturing
applications: A review. Robotics, 8(4):100, 2019.

John Brooke et al. Sus-a quick and dirty usability scale. Usability
evaluation in industry, 189(194):4-7, 1996.

J. Sauro. A Practical Guide to the System Usability Scale: Background,
Benchmarks & Best Practices. Measuring Usability LLC, 2011.
Justin Huang and Maya Cakmak. Supporting mental model accuracy
in trigger-action programming. In Proceedings of the 2015 acm
international joint conference on pervasive and ubiquitous computing,
pages 215-225, 2015.

